scholarly journals Wind Energy Potential at Badin and Pasni Costal Line of Pakistan

2017 ◽  
Vol 6 (2) ◽  
pp. 103 ◽  
Author(s):  
Ghulam Sarwar Kaloi ◽  
Jie Wang ◽  
Mazhar H Baloch ◽  
Sohaib Tahir

Unfortunately, Pakistan is facing an acute energy crisis since the past decade due to the increasing population growth and is heavily dependent on imports of fossil fuels. The shortage of the electricity is 14-18 hours in rural areas and 8-10 hours in urban areas. This situation has been significantly affecting the residential, industrial and commercial sectors in the country. At this time, it is immense challenges for the government to keep the power supply provision continue in the future for the country. In this situation, it has been the increased research to explore renewable energy resources in the country to fulfill the deficit scenario in the state. The renewable energy sector has not penetrated in the energy mix, currently in the upcoming markets. This paper highlights the steps taken by the country in the past and is taking steps at the present time to get rid of from the existing energy crisis when most urban areas are suffering from power outages for 12 hours on regular basis. Until 2009, no single grid interconnected wind established, but now the circumstances are changing significantly and wind farms are contributing to the national grid is the reality now. The initiation of the three wind farms interconnection network and many others in the pipeline are going to be operational soon. The federal policy on wind energy system has recently changed. Surprisingly, the continuing schemes of the wind farm are getting slow. This paper reviews developments in the wind energy sector in the country and lists some suggestions that can contribute to improving the penetration of wind energy in the national energy sector.Keywords: Wind energy, evolution of wind resource, Wind sites of PakistanArticle History: Received Dec 16th 2016; Received in revised form May 15th 2017; Accepted June 18th 2017; Available onlineHow to Cite This Article: Kaloi,G.S., Wang, J., Baloch, M.H and Tahir, S. (2017) Wind Energy Potential at Badin and Pasni Costal Line Pakistan. Int. Journal of Renewable Energy Development, 6(2), 103-110.https://doi.org/10.14710/ijred.6.2.103-110

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2357 ◽  
Author(s):  
Andrea Farkas ◽  
Nastia Degiuli ◽  
Ivana Martić

The European Union is a leading patron for the introduction of renewable energy, having set a target that renewable sources will represent at least 27% of total energy consumption by the year 2030. Presently, the most significant Croatian renewable resource is hydropower, which is presently at its peak and will not develop further because of limited hydro resources. Therefore, the share of electricity generation from onshore wind farms in Croatia during in recent years has grown significantly. However, as the Croatian government has already made most of the concessions for possible locations of wind farms, the aim of the present study is to evaluate a different renewable energy resource, wave energy. An assessment of the offshore wave energy potential in the Croatian part of the Adriatic Sea is performed using data taken from WorldWaves atlas (WWA). WWA is based on satellite measurements, validated against buoy measurements and reanalysed by numerical wave modelling. This assessment was done for seven locations, and mean yearly energy is calculated for two offshore wave energy converters. Capacity factors were calculated for annual as well as for seasonal levels, and it was concluded that the bulk of the energy would be generated in autumn and winter. The most probable extreme significant wave height was determined at the investigated locations as well. Furthermore, the offshore wind energy potential was evaluated and compared to the wave energy potential.


2014 ◽  
Vol 10 (1) ◽  
pp. 38-45
Author(s):  
Angel Terziev ◽  
Ivan Antonov ◽  
Rositsa Velichkova

Abstract Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements), the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2014 ◽  
pp. 123-127
Author(s):  
Frank O’Connor

The Irish wind energy sector is booming. In 2012, Irish wind farms supplied enough energy to provide about 15% of Ireland’s electricity demand and power 1.12 million households. In March 2014, The Irish Wind Energy Association (IWEA), an organisation committed to the promotion of wind energy in Ireland, highlighted a planned €7 billion investment in the sector, with a confirmed project pipeline of over 180 new wind schemes. According to a recent TCD/ESRI report, this will bring the total number of jobs in the sector from 3,400 at present to over 8,400 and see a doubling of production of clean, indigenous, renewable energy. The modern wind turbines, which will be rolled out as part of these new schemes are a far cry from the turbines installed over four decades ago at the first commercial wind farm, constructed in 1980 on Crotched Mountain, New Hampshire, USA. A modern turbine such as ...


2021 ◽  
Vol 10 (4) ◽  
pp. 839-856
Author(s):  
Muhammad Tayyab Naqash ◽  
Mohammad Hasan Aburamadan ◽  
Ouahid Harireche ◽  
Abdulrahman AlKassem ◽  
Qazi Umar Farooq

Climate change and natural resource depletion are likely to affect the future economic development of a country. The generation of power from oil and gas is among the major causes of reserves depletion and global warming. However, renewable energy is also deemed a clean and green choice for power generation to promote sustainability in engineering. The coastal lines of the Kingdom of Saudi Arabia (KSA) are widely extended, and wind energy appears to be a viable alternative to traditional sources, which needs to be investigated as it is highly desirable to seek energy from renewable energy sources, for instance, wind. This paper is aimed at addressing the wind energy potential along the Red Sea coast of KSA. Afterward, a suitable wind turbine based upon careful structural analysis has been proposed, which would form a basis, especially during the machine selection and design phases. For this purpose, seven different sites located along the coastal line, namely: Al Wajh, Umluj, Yanbu, Rabigh, Jeddah, Haddad, and Gizan, were initially selected to assess the wind energy availability. After that, a suitable turbine is recommended for yielding maximum output. It has been found from the reconnaissance that Al Wajh has sufficient land availability that receives high perennial wind speed, alongside shallow offshore water depth for monopile installation. Hence, this site is recommended for the development of a wind farm. Furthermore, turbines need to be installed at the height of almost 100 m to produce maximum energy to appropriately utilize the available indigenous wind energy. It is pertinent to mention that the superstructure of the turbines is designed based on the local loading conditions (wind, currents, waves, etc.) of the Al Wajh region. Also, the monopile substructures are proposed in the selected area in accordance with the available bathymetry.


Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Giedrius Gecevičius ◽  
Mantas Marčiukaitis ◽  
Antanas Markevičius ◽  
Vladislovas Katinas

The installed wind power in Lithuania reached 422 MW in 2015, and it was one of the most developing renewable energy sectors in the country. For this reason, it is important to estimate wind energy potential and the tendencies of wind power prediction accuracy. In this work, the results of statistical analysis of wind measurements in a number of locations in Lithuania are presented, which makes the basis for wind energy potential estimation. Wind power prediction errors of different time scales have been analysed, and the influence of seasonal and diurnal wind power variation is pointed out. Also, the  possibilities of connection of new wind farms to the grid are analysed in the paper. Investigation shows that northern and middle regions of Lithuania are the  most favourable for further wind power development with the goal of reaching the total installed power of 840 MW till 2030.


2021 ◽  
Vol 1 (5) ◽  
pp. 7-11
Author(s):  
Georgi Belev

Global climate fluctuations and projections of deteriorating sustainable human development since the beginning of the 21st century have highlighted the need to look for alternative energy sources to carbon fuels. The utilization of solar and wind energy has become a challenge for engineers and technologists to develop new technologies for more efficient development of renewable energy sources. The purpose of this paper is to present the territorial features in the utilization of renewable energy sources – solar radiation and wind in Bulgaria. The study focuses on the regional features of the solar- and wind energy potential. Based on statistical data, the utilization of the RES potential is considered through a review of the installed capacities


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Francisco Haces-Fernandez

Damages caused by wildfires in California due to transmission line failures have increased significantly in recent years. Curtailment of electric service in areas under fire threat has been implemented to avoid these wildfires. Results from this research indicated that 24% of California’s cities are at risk of wildfire, while 52% are at risk of blackout. These blackouts have resulted in significant financial losses and risk to life and health. Undergrounding current transmission lines has been proposed as a long-term solution. However, undergrounding lines would take decades to complete and increase average monthly electric bills from $80 to $260. This research investigated shortening the length of the electricity supply chain, supplying affected communities with onshore and offshore wind energy. Results showed good wind energy potential in locations near affected cities. Distance analyses revealed that more than two hundred cities (population 5.5 million) can be served by existing wind farms located at less than 50 km. Future offshore wind turbines could generate high power output (capacity factor >50% for significant periods). An analysis of diverse locations along California’s coast indicated that just one offshore wind farm could serve more than a hundred cities with cumulative population larger than one million.


Sign in / Sign up

Export Citation Format

Share Document