scholarly journals Validation of High-Performance Liquid Chromatography Method for Determination of Vitamin B1 in Powder Milk

2020 ◽  
Vol 23 (5) ◽  
pp. 177-182
Author(s):  
Supriyono Supriyono ◽  
Mudhiah Fitrillah ◽  
Arie Pratama Putra

Vitamin B1 plays an important role in the co-enzymatic reactions for energy-rich compounds called ATP (Adenosine Tri Phosphate). Therefore, it should be added to various food products, for example, milk powder. One method that can be used to determine vitamin B1 is SNI number 3751: 2009, but the method is intended for wheat flour. If the method is to be used for the analysis from other samples, such as milk powder, optimization, and validation, are needed. This experiment was carried out using HPLC, C18 column, and UV detector with a wavelength of 254 nm. The mobile phase used is methanol: acetic acid: bi-distilled water = 32:1:67 (v/v/v), flow rate = 1 mL/minute, isocratic, and reverse phased technique. Method validation parameters include tests of system suitability, linearity, the limit of detection, the limit of quantitation, precision (repeatability), and accuracy. The results showed that the system suitability test was obtained relative standard deviations (% RSD) for retention time and peak area, tailing factor, resolution, separation factor was 0.297%, 1.476%, 1.113, 6.693, and 4.406 respectively. The validation test gets a correlation coefficient (R) of 0.9996, the limit of detection and limit of quantitation were 0.0122 mg/100 mL and 0.0244 mg/100 mL, respectively. The precision test obtained Horwitz's ratio of 0.27%. Accuracy test using CRM obtained % recovery of 93.79-97.77%. All these results meet the requirements of method validation, so it can be concluded that the method of SNI number 3751: 2009 is valid for the determination of vitamin B1 in milk powder and can be used for routine analysis procedure.

2007 ◽  
Vol 90 (3) ◽  
pp. 720-724
Author(s):  
Sevgi Tatar Ulu

Abstract A sensitive and selective high-performance liquid chromatographic method has been developed for the determination of tianeptine (Tia) in tablets. The method is based on derivatization of Tia with 4-chloro-7-nitrobenzofurazan (NBD-Cl). A mobile phase consisting of acetonitrile10 mM orthophosphoric acid (pH 2.5; 77 + 23) was used at a flow rate of 1 mL/min on a C18 column. The Tia-NBD derivative was monitored using a fluorescence detector, with emission set at 520 nm and excitation at 458 nm. Gabapentin was selected as an internal standard. Linear calibration graphs were obtained in the concentration range of 45300 ng/mL. The lower limit of detection (LOD) was 10 ng/mL at a signal-to-noise ratio of 4. The lower limit of quantitation (LOQ) was 45 ng/mL. The relative standard values for intra- and interday precision were <0.46 and <0.57%, respectively. The recovery of the drug samples ranged between 98.89 and 99.85%. No chromatographic interference from the tablet excipients was found. The proposed method was validated in terms of precision, robustness, recovery, LOD, and LOQ. All the validation parameters were within the acceptance range. The proposed method was applied for the determination of Tia in commercially available tablets. The results were compared with those obtained by an ultraviolet spectrophotometric method using t- and F-tests.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


2013 ◽  
Vol 634-638 ◽  
pp. 1586-1590
Author(s):  
Su Fang Wang ◽  
Shou Jie Zhang ◽  
Chun Hong Dong ◽  
Guo Qing Wang ◽  
Jun Feng Guo ◽  
...  

A method for simultaneous determination of residuals of four herbicides and pesticides, simazine, carboxin, diflubenzuron and rotenone, in Chinese green tea was developed. In the proposed method, the tea powder was placed in a centrifuge tube with a plug, extracted in saturated aqueous sodium chloride solution and acetonitrile, agitated using vortex oscillator, and then centrifuged 5 min at 4000 rpm. The supernatant solution was purified by primary secondary amine (PSA) sorbent, C18 power, and graphitized carbon black powder, respectively. Then the purified extracts were dissolved with acetonitrile:0.1% formic acid aqueous solution (40:60, V/V) and agitated, filtered using a syringe with 0.22 μm nylon filter prior to UPLC-MS/MS analysis. The UPLC analysis was performed on an ACQUITY UPLC® HSS T3 column (2.1 mm×100 mm, 1.8 µm), using acetonitrile-0.1% formic acid as mobile phase with the flow rate as 0.3 mL•min-1. Injection volume was 10 µL. Positive ionization mode was applied, and the ions were monitored in the multiple reaction monitoring (MRM) mode with curtain gas 0.069 MPa, collision gas 0.052 MPa, ESI ion spray voltage 5000 V, temperature 550 °C, nebulizer gas 0.24 MPa, and turbo gas 0.28 MPa. The limit of detection (LOD) and limit of quantitation (LOQ) of the proposed method are 1 μg•kg-1and 5 μg•kg-1, respectively. The average recoveries of the four pesticides at 10, 20, and 50 µg•kg-1spiking levels range from 77.4% to 95.3%. TheSupersSuperscript textcript textrelative standard deviation (RSD) (n=6) range form 11.83% to 4.52%.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 349-354
Author(s):  
BALU KHANDARE ◽  
Atish C. Musle ◽  
Sanket S. Arole ◽  
Pravin V. Popalghat

Abstract: A simple, precise and economical UV-spectrophotometric method has been developed for the estimation of Olmutinib from bulk. Two methods were developed First method (A) applied was area under curve (AUC) in which the area was integrated in wavelength from 262-272nm. Second method (B) was first order derivative spectrometric method. In this method absorbance at λmin=256.57nm, λmax=282.83nm and zero cross=267.68nm was measured. Calibration curves were plotted for the method by using instrumental response at selected wavelength and concentration of analyte in the solution. In both the methods, linearity was observed in the concentration range of 2-12µg/ml at the λmax=267.68nm. Accuracy and precision studies were carried out and results were satisfactorily obtained. The drug at each of the 80 %, 100 % and 120 % levels showed good recoveries that is in the range of 98.00 to 99.00% for both methods, hence it could be said that the method was accurate. Limit of detection (LOD) and limit of quantitation (LOQ) were determined for the method. The method was validated as per International Conference on Harmonization. All validation parameters were within the acceptable limit. The developed method was successfully applied to estimate the amount of Olmutinib in pharmaceutical formulation.


2009 ◽  
Vol 92 (1) ◽  
pp. 302-306 ◽  
Author(s):  
Xiao-Jing Yan ◽  
Xiao-Mei Liang ◽  
Yan-Jun Xu ◽  
Shu-Hui Jin ◽  
Dao-Quan Wang

Abstract A method was developed for the determination of 7B3 (12-propyloxyimino-1,15-pentadecanlactam), a novel macrolactam fungicide, by liquid chromatography/mass spectrometry (LC/MS) with positive electrospray ionization (ESI+). The method used a reversed-phase C18 column and acetonitrilewater (60 + 40, v/v) mobile phase. The quick, easy, cheap, effective, rugged, and safe method was used for extraction of 7B3 from cotton plants, which involved the extraction of 10 g homogenized sample with 10 mL acetonitrile, followed by the addition of 4 g anhydrous MgSO4 and 1.0 g NaCl. After centrifugation, 1 mL of the buffered acetonitrile extract was transferred into a tube containing 50 mg primary secondary amine sorbent and 100 mg anhydrous MgSO4. After shaking and centrifugation, the final extract was transferred to an autosampler vial for concurrent analysis by LC/MS. The results of 7B3 determined by LC/MS in the selective ion monitoring mode were linear, and the matrix effect of the method was evaluated. The average recoveries of 7B3 fortified at different levels were within 84.1100.2, and the relative standard deviations were &lt;7.5 for all samples analyzed. The method limit of detection and the limit of quantitation values were 0.03 and 0.1 mg/kg, respectively. The proposed method was successfully applied to determine 7B3 residues in practical samples. This method is sensitive, accurate, reliable, simple, and safe.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2018 ◽  
Vol 5 (4) ◽  
pp. 171500 ◽  
Author(s):  
N. I. Mohd ◽  
N. N. M. Zain ◽  
M. Raoov ◽  
S. Mohamad

A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient ( R 2 ) in the range of 0.991–0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l −1 (atrazine) and 1.22 µg l −1 (propazine), and the limit of quantitation was 3.54 µg l −1 (atrazine) and 4.07 µg l −1 (propazine). Satisfactory recoveries in the range of 81–108% were determined in milk samples at 5 and 1000 µg l −1 , respectively, with low relative standard deviation, n  = 3 of 0.301–7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.


Author(s):  
ILMA NUGRAHANI ◽  
STEPHANIE SULISTIANA ◽  
SLAMET IBRAHIM

Objective: This study was aimed to develop a rapid analysis using FTIR (Fourier Transform Infra-Red) for papaverine hydrochloride (HCl) determination in the hair sample, supported by a mathematically manipulation; which never been reported before in toxicology and forensic analysis. Methods: Firstly, the method was checked its validity to ensure the feasibility for the quantitative purpose. The absorbance spectrums were collected by measure the drug, matrix, and its mixture. A spectra which showed the best specificity and linearity then was selected and derived. Afterwards, the area under the curve (AUC) was measured. A series of concentration was used for compose the calibration curve. Based on the result, some validation parameters were checked thoroughly. Further, for sample preparation, hair was collected non-invasively, then was decontaminated using soap. Next, it was immersed into a papaverine HCl solution at a concentration of 25 mg/ml along days. Finally, the amount of drugs absorbed were measured by the developed method using FTIR. Results: Experimental data showed that all validation parameters could be fulfilled by the developed method. The selected spectra for the content determination was 1320-1230 cm-1. Its linearity was represented by a correlation coefficient value (r) ≥ 0.9999, variation coefficient (Vxo) ≤ 2.0%. The limit of detection (LOD) was 0.00618% w/w, meanwhile, the limit of quantitation (LOQ) was 0.02060% w/w, respectively. The percent recovery was in the range 97-103% with the relative standard deviation (RSD) was ≤ 2.0%. The drug has detected after 72 h immersion, moreover, after 192 h the concentration gained was 0.1594±0.0011% w/w. Conclusion: As the conclusion, FTIR absorbance-derivative method is adequate as a rapid procedure for determine papaverine HCl in the hair sample. This method shows the appropriate of specificity, accuracy and precise. In addition, it shows the advantages of simplicity, green/eco-friendlier, and cost-efficiency.


2018 ◽  
Vol 17 (2) ◽  
pp. 175-182
Author(s):  
Joy Chandra Rajbangshi ◽  
Md Mahbubul Alam ◽  
Md Shahadat Hossain ◽  
Md Samiul Islam ◽  
Abu Shara Shamsur Rouf

This research was aimed to establish a versatile, sensitive, rapid and validated RP-HPLC method to analyze linagliptin in bulk as well as in pharmaceutical dosage forms. Liquid chromatography was performed on HPLC system and 20μl of samples were injected into a C18 column (150 x 4.6 mm i.d., 5μm particle size) and the eluents were monitored through a PDA detector at 239 nm. An isocratic method with a flow rate of 1 ml/min was used to elute the compounds with a mobile phase comprised of 70:30 v/v mixture of phosphate buffer (pH 6.8±0.2) and acetonitrile. The retention time of the compound was found to be 2.8 minutes. According to the ICH Q2(R1) guidelines, the method was validated by establishing several analytical parameters such as system suitability, specificity, linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), ruggedness and robustness to assay linagliptin. The method showed good linearity (R2 = 0.9981) over the concentration ranges of 40 – 60 μg/ml with a recovery between 99.48% ± 0.38% RSD to 100.22% ± 0.011% RSD, whereas the LOD and LOQ values were 0.05 μg/ml and 0.15 μg/ml, respectively. The relative standard deviation (% RSD) for inter-day and intra-day precision was not more than 2.0%. Hence, the proposed method can be applied accurately for research and routine analysis of linagliptin in bulk as well as different pharmaceutical dosage forms. Dhaka Univ. J. Pharm. Sci. 17(2): 175-182, 2018 (December)


Sign in / Sign up

Export Citation Format

Share Document