scholarly journals PEMBUATAN SELULOSA TERASETILASI DARI PULP BAMBU BETUNG (Dendrocalamus asper) SERTA PENGARUHNYA TERHADAP SIFAT MEKANIS BIOKOMPOSIT POLIPROPILENA

REAKTOR ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 25 ◽  
Author(s):  
Wida Banar Kusumaningrum ◽  
R Rochmadi ◽  
S Subyakto

Abstract ACETYLATED CELLULOSE FROM BETUNG BAMBOO (Dendrocalamus asper) PULP PRODUCTION AND ITS EFFECT ON MECHANICAL PROPERTIES OF POLYPROPYLENE COMPOSITES. The utilization of natural fiber as reinforcing agent for biocomposite products have some drawbacks, such as its hydrophilicity that are incompatible with PP. Isolation from bundle fibers into micro fibers could improves the biocomposite properties. However, more moisture absorption of micro fiber makes it difficult to handle. Therefore, modification with acetylation is needed to facilitate good interfacial adhesion between cellulose and PP. The objectives of this research are to obtain acetylated micro fibers from betung bamboo pulp for reinforcing agent and to investigate the effect of acetylated cellulose on mechanical properties of PP biocomposites. Acetate anhydride as acetylating agent and sulfuric acid as a catalyst were used for acetylation process. Acetylated cellulose from betung bamboo pulp with fibrous form, hydrophobic condition, and relatively on high aspect ratio was obtained in 2% of catalyst concentration and 120 of reaction time. Strength enhancement were achieved up to 79 and 87% for tensile while 24 and 69% for flexural, respectively for biocomposites with 10% and 20% of acetylated cellulose than that PP. Modulus improvement were obtained up to 53 and 70% for tensile while 96 and 149% for flexural, respectively for biocomposites with 10% and 20% of acetylated cellulose than that PP. Keywords: acetylation; betung bamboo; biocomposite; polypropylene; cellulose   Abstrak Penerapan serat alam untuk produk biokomposit memiliki beberapa kelemahan terutama perbedaan sifat antara matrik dengan serat yang menyebabkan ikatan antar muka yang kurang baik. Pengolahan serat bundle menjadi serat mikro dapat meningkatkan sifat-sifat biokomposit, akan tetapi sifat dari serat mikro yang mudah menyerap air membuat penanganannya menjadi lebih komplek. Modifikasi kimia serat dengan asetilasi merupakan upaya untuk meningkatkan keterbasahan dan ikatan antar muka dengan matrik PP. Tujuan dari penelitian ini adalah untuk memperoleh serat mikro terasetilasi dari pulp bambu betung agar dapat digunakan sebagai penguat dan mempelajari pengaruhnya terhadap sifat mekanis biokomposit PP. Proses asetilasi menggunakan asetat anhidrat sebagai bahan pengasetilasi dan asam sulfat sebagai katalis. Serat mikro bambu betung terasetilasi yang bersifat hidrofobik dan memiliki aspek rasio tinggi diperoleh pada jumlah katalis 2% dengan waktu 120 menit. Peningkatan kuat tekuk mencapai 76 dan 87% sedangkan kuat tarik sekitar 24 dan 69% masing-masing untuk biokomposit dengan selulosa terasetilasi 10% dan 20% terhadap PP murni. Keteguhan tarik meningkat hingga 53 dan 70% sedangkan keteguhan tekuk mencapai 96 dan 149% berturut-turut untuk biokomposit dengan 10% dan 20% selulosa terasetilasi dibandingkan PP. Selulosa terasetilasi dari pulp bambu betung mampu berfungsi sebagai bahan pembentuk inti untuk biokomposit PP. Kata kunci: asetilasi; bambu betung; biokomposit; polipropilena; selulosa

Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Yunlong Jia ◽  
Bodo Fiedler

Poor moisture resistance of natural fiber reinforced bio-composites is a major concern in structural applications. Many efforts have been devoted to alleviate degradation of bio-composites caused by moisture absorption. Among them, fiber pre-treatment has been proven to be effective. This paper proposes an alternative “green” fiber pretreatment with furfuryl alcohol. Pre-treatments with different parameters were performed and the influence on the mechanical properties of fiber bundles and composites was investigated. Moisture resistance of composites was evaluated by water absorption tests. Mechanical properties of composites with different water contents were analyzed in tensile tests. The results show that furfuryl alcohol pretreatment is a promising method to improve moisture resistance and mechanical properties (e.g., Young’s modulus increases up to 18%) of flax fiber composites.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1643 ◽  
Author(s):  
Nabilah Afiqah Mohd Radzuan ◽  
Dulina Tholibon ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Che Hassan Che Haron

Automotive parts, including dashboards and trunk covers, are now fabricated through a compression-molding process in order to produce lightweight products and optimize fuel consumption. However, their mechanical strength is not compromised to avoid safety issues. Therefore, this study investigates kenaf-fiber-reinforced polypropylene composites using a simple combing approach to unidirectionally align kenaf fibers at 0°. The kenaf composite was found to withstand a maximal temperature of 120 °C. The tensile and flexural strengths of the aligned kenaf composites (50 and 90 MPa, respectively) were three times higher than those of the commercialized Product T (between 39 and 30.5 MPa, respectively) at a temperature range of 90 to 120 °C. These findings clearly showed that the mechanical properties of aligned kenaf fibers fabricated through the combing technique were able to withstand high operating temperatures (120 °C), and could be used as an alternative to other commercial natural-fiber products.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 782 ◽  
Author(s):  
Wei Wang ◽  
Xiaomin Guo ◽  
Defang Zhao ◽  
Liu Liu ◽  
Ruiyun Zhang ◽  
...  

Environmentally sound composites reinforced with natural fibers or particles interest many researchers and engineers due to their great potential to substitute the traditional composites reinforced with glass fibers. However, the sensitivity of natural fiber-reinforced composites to water has limited their applications. In this paper, wood powder-reinforced polypropylene composites (WPCs) with various wood content were prepared and subjected to water absorption tests to study the water absorption procedure and the effect of water absorbed in the specimens on the mechanical properties. Water soaking tests were carried out by immersion of composite specimens in a container of distilled water maintained at three different temperatures, 23, 60 and 80 °C. The results showed that the moisture absorption content was related to wood powder percentage and they had a positive relationship. The transfer process of water molecules in the sample was found to follow the Fickian model and the diffusion constant increased with elevated water temperature. In addition, tensile and bending tests of both dry and wet composite samples were conducted and the results indicated that water absorbed in composite specimens degraded their mechanical properties. The tensile strength and modulus of the composites reinforced with 15, 30, 45 wt % wood powder decreased by 5.79%, 17.2%, 32.06% and 25.31%, 33.6%, 47.3% respectively, compared with their corresponding dry specimens. The flexural strength and modulus of the composite samples exhibited a similar result. Furthermore, dynamic mechanical analysis (DMA) also confirmed that the detrimental effect of water molecules on the composite specimens.


2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


2008 ◽  
Vol 47-50 ◽  
pp. 403-406 ◽  
Author(s):  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn ◽  
Saowapa Tananimit

Due to environmental reasons and their acceptable mechanical properties, natural fiber based polymer composites have been increasingly used in various applications, e.g. housing materials, automotive parts. However, their low thermal resistance and fire behavior limit the use of these materials. In this work, magnesium hydroxide (Mg(OH)2), as a flame retardant, was incorporated into sisal/polypropylene composites. Ratio of sisal fiber to Mg(OH)2 in each composite sample was varied. Maleic anhydride grafted polypropylene (MAPP) was also used to improve the interface of polypropylene and fillers. Flammability and thermal behavior of the composites were examined using a horizontal burning test and thermo gravimetric analyzer, respectively. Morphology and mechanical properties of the composites were also investigated.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 79-85 ◽  
Author(s):  
Wei Hu ◽  
Minh-Tan Ton-That ◽  
Johanne Denault ◽  
Christian Belanger

AbstractFlax is a type of natural fiber widely used as reinforcing materials for polymer composites. The commercially available flax fibers in Canada consist of a significant amount of shive and other impurities, which could act as stress concentration regions to negatively affect the mechanical property of composites. In this study, the shive was manually removed from the commercial flax fibers by screening and combing to obtain different shive contents from 0 to 30 wt%. By contrast, the obtained flax fibers were further treated with alkaline solution. The fibers obtained from mechanical and alkali treatment were compared on their thermal and mechanical properties. As expected, it was found that the thermal stability and mechanical properties of the flax reinforced polypropylene composites increased significantly with the removal of the shive content. However, the alkali treatment on flax fiber did not further improve the composites properties. The possible reason was that the proper mechanical treatment (screening and combing) prior to alkaline treatment effectively loosened the fiber bundles for better single fiber separation in matrix and significantly removed the impurities, thus the effect of alkaline treatment did not become obvious.


2018 ◽  
Vol 911 ◽  
pp. 88-94 ◽  
Author(s):  
Omid Nabinejad ◽  
Sujan Debnath ◽  
Jack Kai Beh ◽  
Mohammad Yeakub Ali

Bamboo fibers as a natural fiber offer numerous advantages such as high specific strength over synthetic fiber when used as reinforcing fiber for polymer composites. Yet the hydrophilic nature of bamboo fibers with high moisture absorption results in incompatibility in between bamboo fibers and unsaturated polyester resin. An experimental study was carried out to investigate the effects of alkali treatment of bamboo fiber on the mechanical properties and water sorption properties of polyester composite. The result revealed that, the bamboo fiber polyester composite with 5% Alkali treated bamboo fiber possesses the highest mechanical properties. Besides, Alkali treated fibers composite showed a significant reduction in moisture uptake compared to untreated fibers, where composite with 7% Alkali treated showed the lowest moisture uptake.


Sign in / Sign up

Export Citation Format

Share Document