scholarly journals Influence of Furfuryl Alcohol Fiber Pre-Treatment on the Moisture Absorption and Mechanical Properties of Flax Fiber Composites

Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Yunlong Jia ◽  
Bodo Fiedler

Poor moisture resistance of natural fiber reinforced bio-composites is a major concern in structural applications. Many efforts have been devoted to alleviate degradation of bio-composites caused by moisture absorption. Among them, fiber pre-treatment has been proven to be effective. This paper proposes an alternative “green” fiber pretreatment with furfuryl alcohol. Pre-treatments with different parameters were performed and the influence on the mechanical properties of fiber bundles and composites was investigated. Moisture resistance of composites was evaluated by water absorption tests. Mechanical properties of composites with different water contents were analyzed in tensile tests. The results show that furfuryl alcohol pretreatment is a promising method to improve moisture resistance and mechanical properties (e.g., Young’s modulus increases up to 18%) of flax fiber composites.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2827
Author(s):  
Ayyappa Atmakuri ◽  
Arvydas Palevicius ◽  
Madhusudan Siddabathula ◽  
Andrius Vilkauskas ◽  
Giedrius Janusas

Natural fibers have many advantages over synthetic fibers due to their lightness, low cost, biodegradability, and abundance in nature. The demand for natural fiber hybrid composites in various applications has increased recently, because of its promising mechanical properties. In this research work, the mechanical and wettability properties of reinforced natural fiber epoxy resin hybrid composites were investigated. The main aim of this research work is the fabrication of hybrid composites and exploit its importance over individual fiber composites. The composites were fabricated based on the rule of hybridization mixture (0.4 wf) of two fibers using sets of either hemp and flax or banana and pineapple, each set with 40 wt%, as well as four single fiber composites, 40 wt% each, as reinforcement and epoxy resin as matrix material. A total of two sets (hemp/flax and banana/pineapple) of hybrid composites were fabricated by using a hand layup technique. One set as 40H/0F, 25H/15F, 20H/20F, 15H/25F, 0H/40F, and the second one as 40B/0P, 25B/15P, 20B/20P, 15B/25P, 0B/40P weight fraction ratios. The fabricated composites were allowed for testing to examine its mechanical, wettability, and moisture properties. It has been observed that, in both cases, hybrid composites showed improved mechanical properties when compared to the individual fiber composites. The wettability test was carried out by using the contact angle measurement technique. All composites in both cases, hybrid or single showed contact angle less than 90°, which is associated with the composite hydrophilic surface properties. The moisture analysis stated that all the composites responded for moisture absorption up to 96 h and then remained constant in both cases. Hybrid composites absorbed less moisture than individual fiber composites.


2020 ◽  
Vol 13 ◽  
Author(s):  
V. Arumugaprabu ◽  
K.Arun Prasath ◽  
S. Mangaleswaran ◽  
M. Manikanda Raja ◽  
R. Jegan

: The objective of this research is to evaluate the tensile, impact and flexural properties of flax fiber and basalt powder filled polyester composite. Flax fiber is one of the predominant reinforcement natural fiber which possess good mechanical properties and addition of basalt powder as a filler provides additional support to the composite. The Composites are prepared using flax fiber arranged in 10 layers with varying weight percentage of the basalt powder as 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.% respectively. From the results it is inferred that the composite combination 10 Layers of flax / 5 wt.%, basalt Powder absorbs more tensile load of 145 MPa. Also, for the same combination maximum flexural strength is about 60 MPa. Interestingly in the case of impact strength more energy was absorbed by 10 layers of flax and 30 wt.% of basalt powder. In addition, the failure mechanism of the composites also discussed briefly using SEM studies.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


Author(s):  
Faris M. AL-Oqla

The available potential plant waste could be worthy material to strengthen polymers to make sustainable products and structural components. Therefore, modeling the natural fiber polymeric-based composites is currently required to reveal the mechanical performance of such polymeric green composites for various green products. This work numerically investigates the effect of various fiber types, fiber loading, and reinforcement conditions with different polymer matrices towards predicting the mechanical performance of such natural fiber composites. Cantilever beam and compression schemes were considered as two different mechanical loading conditions for structural applications of such composite materials. Finite element analysis was conducted to modeling the natural fiber composite materials. The interaction between the fibers and the matrices was considered as an interfacial friction force and was determined from experimental work by the pull out technique for each polymer and fiber type. Both polypropylene and polyethylene were considered as composite matrices. Olive and lemon leaf fibers were considered as reinforcements. Results have revealed that the deflection resistance of the natural fiber composites in cantilever beam was enhanced for several reinforcement conditions. The fiber reinforcement was capable of enhancing the mechanical performance of the polymers and was the best in case of 20 wt.% polypropylene/lemon composites due to better stress transfer within the composite. However, the 40 wt.% case was the worst in enhancing the mechanical performance in both cantilever beam and compression cases. The 30 wt.% of polyethylene/olive fiber was the best in reducing the deflection of the cantilever beam case. The prediction of mechanical performance of natural fiber composites via proper numerical analysis would enhance the process of selecting the appropriate polymer and fiber types. It can contribute finding the proper reinforcement conditions to enhance the mechanical performance of the natural fiber composites to expand their reliable implementations in more industrial applications.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1252 ◽  
Author(s):  
Bryn Crawford ◽  
Sepideh Pakpour ◽  
Negin Kazemian ◽  
John Klironomos ◽  
Karen Stoeffler ◽  
...  

2017 ◽  
Vol 867 ◽  
pp. 41-47 ◽  
Author(s):  
Chitra Umachitra ◽  
N.K. Palaniswamy ◽  
O.L. Shanmugasundaram ◽  
P.S. Sampath

Natural fibers have been used to reinforce materials in many composite structures. Many types of natural fibers have been investigated including flax, hemp, ramie, sisal, abaca, banana etc., due to the advantage that they are light weight, renewable resources and have marketing appeal. These agricultural wastes can also be used to prepare fiber reinforced polymer hybrid composites in various combinations for commercial use. Application of composite materials in structural applications has presented the need for the engineering analysis. The present work focuses on the fabrication of polymer matrix composites by using natural fibers like banana and cotton which are abundant in nature and analysing the effect of mechanical properties of the composites on different surface treatments on the fabric. The effect of various surface treatments (NaOH, SLS, KMnO4) on the mechanical properties namely tensile, flexural and impact was analyzed and are discussed in this project. Analysing the material characteristics of the compression moulded composites; their results were measured on sections of the material to make use of the natural fiber reinforced polymer composite material for automotive seat shell manufacturing.


2018 ◽  
Vol 15 (2) ◽  
pp. 76-86 ◽  
Author(s):  
Liva Pupure ◽  
Janis Varna ◽  
Roberts Joffe ◽  
Fredrik Berthold ◽  
Arttu Miettinen

Sign in / Sign up

Export Citation Format

Share Document