Application of novel Bacillus subtilis systems to efficient secretory production of heterologous proteins

1999 ◽  
Author(s):  
Edward Kat Hon Lam
2011 ◽  
Vol 78 (3) ◽  
pp. 651-659 ◽  
Author(s):  
Liuyang Diao ◽  
Qilei Dong ◽  
Zhaohui Xu ◽  
Sheng Yang ◽  
Jiahai Zhou ◽  
...  

ABSTRACTBacillus subtilisand its close relatives are widely used in industry for the Sec-dependent secretory production of proteins. Like other Gram-positive bacteria,B. subtilisdoes not possess SecB, a dedicated targeting chaperone that posttranslationally delivers exported proteins to the SecA component of the translocase. In the present study, we have implemented a functional SecB-dependent protein-targeting pathway intoB. subtilisby coexpressing SecB fromEscherichia colitogether with a SecA hybrid protein in which the carboxyl-terminal 32 amino acids of theB. subtilisSecA were replaced by the corresponding part of SecA fromE. coli.In vitropulldown experiments showed that, in contrast toB. subtilisSecA, the hybrid SecA protein gained the ability to efficiently bind toE. coliSecB, suggesting that the structural details of the extreme C-terminal region of SecA constitute a crucial SecB binding specificity determinant. Using a poorly exported mutant maltose binding protein (MalE11) and alkaline phosphatase (PhoA) as model proteins, we could demonstrate that the secretion of both proteins byB. subtiliswas significantly enhanced in the presence of the artificial protein targeting pathway. Mutations in SecB that do not influence its chaperone activity but prevent its interaction with SecA abolished the secretion stimulation of both proteins, demonstrating that the implemented pathway in fact critically depends on the SecB targeting function. From a biotechnological view, our results open up a new strategy for the improvement of Gram-positive bacterial host systems for the secretory production of heterologous proteins.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Takahiro Hioki ◽  
Daichi Yamashita ◽  
Masatoshi Tohata ◽  
Keiji Endo ◽  
Akihito Kawahara ◽  
...  

Abstract Background Most of the proteases classified into the M23 family in the MEROPS database exhibit staphylolytic activity and have potential as antibacterial agents. The M23 family is further classified into two subfamilies, M23A and M23B. Proteases of the M23A subfamily are thought to lack the capacity for self-maturation by auto-processing of a propeptide, which has been a challenge in heterologous production and application research. In this study, we investigated the heterologous expression, in Bacillus subtilis, of the Lysobacter enzymogenes beta-lytic protease (BLP), a member of the M23A subfamily. Results We found that B. subtilis can produce BLP in its active form. Two points were shown to be important for the production of BLP in B. subtilis. The first was that the extracellular proteases produced by the B. subtilis host are essential for BLP maturation. When the host strain was deficient in nine extracellular proteases, pro-BLP accumulated in the supernatant. This observation suggested that BLP lacks the capacity for self-maturation and that some protease from B. subtilis contributes to the cleavage of the propeptide of BLP. The second point was that the thiol-disulfide oxidoreductases BdbDC of the B. subtilis host are required for efficient secretory production of BLP. We infer that intramolecular disulfide bonds play an important role in the formation of the correct BLP conformation during secretion. We also achieved efficient protein engineering of BLP by utilizing the secretory expression system in B. subtilis. Saturation mutagenesis of Gln116 resulted in a Q116H mutant with enhanced staphylolytic activity. The minimum bactericidal concentration (MBC) of the wild-type BLP and the Q116H mutant against Staphylococcus aureus NCTC8325 was 0.75 μg/mL and 0.375 μg/mL, respectively, and the MBC against Staphylococcus aureus ATCC43300 was 6 μg/mL and 3 μg/mL, respectively. Conclusions In this study, we succeeded in the secretory production of BLP in B. subtilis. To our knowledge, this work is the first report of the successful heterologous production of BLP in its active form, which opens up the possibility of industrial use of BLP. In addition, this study proposes a new strategy of using the extracellular proteases of B. subtilis for the maturation of heterologous proteins.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Claudia Petrillo ◽  
Stefany Castaldi ◽  
Mariamichela Lanzilli ◽  
Anella Saggese ◽  
Giuliana Donadio ◽  
...  

Abstract Background Bacterial spores displaying heterologous antigens or enzymes have long been proposed as mucosal vaccines, functionalized probiotics or biocatalysts. Two main strategies have been developed to display heterologous molecules on the surface of Bacillus subtilis spores: (i) a recombinant approach, based on the construction of a gene fusion between a gene coding for a coat protein (carrier) and DNA coding for the protein to be displayed, and (ii) a non-recombinant approach, based on the spontaneous and stable adsorption of heterologous molecules on the spore surface. Both systems have advantages and drawbacks and the selection of one or the other depends on the protein to be displayed and on the final use of the activated spore. It has been recently shown that B. subtilis builds structurally and functionally different spores when grown at different temperatures; based on this finding B. subtilis spores prepared at 25, 37 or 42 °C were compared for their efficiency in displaying various model proteins by either the recombinant or the non-recombinant approach. Results Immune- and fluorescence-based assays were used to analyze the display of several model proteins on spores prepared at 25, 37 or 42 °C. Recombinant spores displayed different amounts of the same fusion protein in response to the temperature of spore production. In spores simultaneously displaying two fusion proteins, each of them was differentially displayed at the various temperatures. The display by the non-recombinant approach was only modestly affected by the temperature of spore production, with spores prepared at 37 or 42 °C slightly more efficient than 25 °C spores in adsorbing at least some of the model proteins tested. Conclusion Our results indicate that the temperature of spore production allows control of the display of heterologous proteins on spores and, therefore, that the spore-display strategy can be optimized for the specific final use of the activated spores by selecting the display approach, the carrier protein and the temperature of spore production.


2020 ◽  
Vol 117 (10) ◽  
pp. 2957-2968
Author(s):  
Shan Liu ◽  
Juan Wang ◽  
Zhiguang Zhu ◽  
Ting Shi ◽  
Yi‐Heng P. Job Zhang

2007 ◽  
Vol 74 (4) ◽  
pp. 1039-1049 ◽  
Author(s):  
Chuan M. Yeh ◽  
Chun K. Yeh ◽  
Xun Y. Hsu ◽  
Qiu M. Luo ◽  
Ming Y. Lin

ABSTRACT Bacillus subtilis and Lactococcus lactis are ideal hosts for the production of extracellular heterologous proteins of major commercial importance. A recombinant gene for the novel Ganoderma lucidium immunomodulatory protein LZ-8, recombinant LZ-8, was designed encoding the same amino acid sequence but using the preferred codons for both strains and was synthesized by overlapping extension PCR. Using the signal peptide (SP) from subtilisin YaB (SPYaB), recombinant LZ-8 was expressed extracellularly in Bacillus subtilis and Lactococcus lactis. In the absence of SPYaB, recombinant LZ-8 was expressed extracellularly in B. subtilis, but not in L. lactis. The three expressed recombinant LZ-8s showed different capacities for modulating the production of Th1 and Th2 cytokines by peripheral blood mononuclear cells and of tumor necrosis factor alpha by a macrophage cell line.


2005 ◽  
Vol 77 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Luís C.S. Ferreira ◽  
Rita C.C. Ferreira ◽  
Wolfgang Schumann

Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.


Sign in / Sign up

Export Citation Format

Share Document