scholarly journals Rosmarinic acid production in cell suspension cultures of Ehretia asperula Zollinger & Moritz

2022 ◽  
Vol 9 (1) ◽  
pp. 70-75
Author(s):  
Pham Thi My Tram ◽  
Ngo Ke Suong ◽  
Le Thi Thuy Tien

Plant cell cultures provide an alternative means for producing secondary compounds in food, cosmetic and pharmaceutical industries. Ehretia asperula Zollinger & Moritzi is used as a traditional medicine for the treatment of liver detoxification, ulcers, tumors, inflammation and enhancing the body's resistance in Vietnam. The study was carried out to select suitable callus line for cell suspension cultures of E. asperula Zollinger & Moritzi and investigate the effects of inoculum size, rotation speed and naphthalene acetic acid (NAA) on the proliferation of cell suspension cultures. In addition, the influence of light intensity on the growth and rosmarinic acid (RA) biosynthesis of cell suspension was also surveyed. After 4 weeks of culture, the white to pale yellow friable callus expanded significantly with a fresh weight (FW) of 0.788 g and a high RA content of 2.062 mg/g FW. An appropriate medium for cell proliferation was the liquid B5 medium, which contained 30 g/l glucose, 0.1 mg/l benzyl adenine (BA) and 0.4 mg/l NAA. The results also demonstrated that a 1:20 ratio (w/v) inoculum size, darkness and rotation speed of 90 rpm were the optimal conditions for the proliferation and RA accumulation to 188.217 mg/l in 4 weeks of culture. These findings showed that E. asperula Zollinger & Moritzi cell suspension cultures could be a potential alternative approach for RA production in vitro.

2011 ◽  
Vol 94 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Justyna Krzyzanowska ◽  
Bogdan Janda ◽  
Lukasz Pecio ◽  
Anna Stochmal ◽  
Wieslaw Oleszek ◽  
...  

Abstract Nine polyphenols in the aerial parts of Mentha longifolia have been separated by chromatographic techniques. Their structures have been confirmed by HPLC/electrospray ionization-MS/MS. The compounds identified included rosmarinic acid, salvianolic acid L, dedihydro–salvianolic acid, luteolin–glucuronide, luteolin–diglucuronide, luteolin–glucopyranosyl–rhamnopyranoside, and eriodictyol–glucopyranosyl–rhamnopyranoside. The extracts of M. longifolia and M. piperita field plants, in vitro plants, callus tissues, and cell suspension cultures were profiled, and their polyphenol composition was compared in different tissues and quantified using ultra-performance column liquid chromatography (UPLC)/triple-quadrupole-MS in the selected-ion recording detection mode. Determination of desired compounds was based on calibration curves obtained for standards, which were previously isolated from M. longifolia aerial parts. The UPLC profiles revealed considerable differences in the synthesis of secondary metabolites among samples coming from field plants, in vitro plants, callus tissues, and cell suspension cultures. Plant tissues coming from field cultivation (for both M. piperita and M. longifolia) contained several phenolic compounds (flavonoids and phenolic acids), whereas plants from in vitro conditions, callus tissues, and suspension cultures contained only a few of them. Rosmarinic acid dominated in all of these samples. These results show that under in vitro conditions, the metabolism of phenolics undergoes a fundamental change.


2019 ◽  
Vol 8 (1) ◽  
pp. 45-56
Author(s):  
Juan Pablo Arias Echeverri ◽  
Isabel Cristina Ortega ◽  
Mariana Peñuela ◽  
Mario Arias

Thevetia peruviana is an ornamental plant considered source of biologically compounds with cardiac and antimicrobial activity. These compounds are normally extracted from different parts of the fully growth plants. In this work, extracts were obtained from callus and cell suspension cultures of T. peruviana and their antimicrobial activity was evaluated by disk diffusion tests against gram negative (Salmonella thipimurium and Escherichia coli) and gram positive (Staphylococcus aureus and Bacillus cereus) strains. Ethanol, methanol and hexane extracts from callus and cell suspension cultures showed biological activity. Methanolic cell suspension extract showed activity against B. cereus and S. aureus. Ethanolic cell suspension extract inhibit all the bacteria, especially S. thipimurium while hexanic extract showed resistance activity against S. thipimurium, S. aureus and B. cereus. In terms of the source of the extracts, hexane extracts obtained from cell suspension cultures showed a higher antimicrobial activity compared to callus, while ethanol extracts had an inverse behavior. These results outline in vitro cell culture of T. peruviana as a feasible biotechnological platform for the production of compounds with antimicrobial activity.


1972 ◽  
Vol 27 (8) ◽  
pp. 946-954 ◽  
Author(s):  
Wolfgang Hösel ◽  
Paul D. Shaw ◽  
Wolfgang Barz

The flavonols kaempferol, quercetin and isorhamnetin were labelled with 14C by keeping seven day old Cicer arietinum L. plants in an atmosphere of 14CO2 for five days. The purified (U-14C) flavonols were applied to cell suspension cultures of Cicer arietinum L., Phaseolus aureus Roxb., Glycine max and Petroselinum hortense. Based on the rates of 14CO2 formation and distribution of radioactivity after fractionation of the cells, the flavonols were shown to be catabolized to a very high extent.All four cell suspension cultures possess the enzymatic activity transforming flavonols to the recently discovered 2,3-dihydroxyflavanones. Upon incubation of the flavonols datiscetin and kaempferol with enzyme preparations from Cicer arietinum L. cell suspension cultures, it was demonstrated that the enzymatically formed 2,3-dihydroxyflavanones are further transformed in an enzyme catalyzed reaction. Salicylic acid was found as a degradation fragment of ring B of the 2,3,5,7,2′-pentahydroxyflavanone derived from datiscetin. Neither phloroglucinol nor phloroglucinol carboxylic acid were observed as metabolites of ring A. These in vitro findings were further substantiated by in vivo data because the flavonols kaempferol, quercetin and datiscetin when applied to cell suspension cultures of Cicer arietinum L. and Glycine max gave rise to para-hydroxybenzoic acid, protocatechuic acid and salicylic acid, respectively. It was thus concluded that flavonols are catabolized via 2,3-dihydroxyflavanones with the B-ring liberated as the respective benzoic acid. The data are discussed in connection with earlier findings on the catabolism of chalcones, cinnamic and benzoic acids.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1738 ◽  
Author(s):  
Simona Lucioli ◽  
Fabio Pastorino ◽  
Paolo Nota ◽  
Giulia Ballan ◽  
Andrea Frattarelli ◽  
...  

Natural compounds are emerging as agents for the treatment of malignant diseases. We previously showed that extracts from in vitro cell suspension cultures of strawberry reduced murine melanoma cell proliferation, as shown for fruit extracts. In this work, chromatographic, mass spectrometric, and spectrophotometric analyses were carried out to identify the bioactive compound exerting the detected cytotoxic activity. Moreover, aiming to confirm the anti-proliferative activity of the extracts against both paediatric and adult human tumors, cytotoxic experiments were performed on neuroblastoma, colon, and cervix carcinoma cell lines. Extracts from in vitro cell suspension cultures of strawberry induced a statistically significant reduction of cell growth in all the tumor cell lines tested. Interestingly, human fibroblasts from healthy donors were not subjected to this cytotoxic effect, highlighting the importance of further preclinical investigations. The accurate mass measurement, fragmentation patterns, and characteristic mass spectra and mass losses, together with the differences in chromatographic retention times and absorbance spectra, led us to hypothesize that the compound acting as an anti-proliferative agent could be a novel acetal dihydrofurofuran derivative (C8H10O3, molecular mass 154.0630 amu)


1975 ◽  
Vol 53 (5) ◽  
pp. 517-519 ◽  
Author(s):  
R. K. Ibrahim ◽  
Emil Cavia

An improved method is described for the extraction of soluble proteins from intact and in-vitro-cultured plant tissues. Its main characteristics are the elimination of contaminants, concentration and stability of extracts, and suitability for acrylamide gel electrophoresis. The usefulness of the method was demonstrated by depicting the differences in protein complements of intact cotyledons, callus tissue, and cell suspension cultures of flax.


Sign in / Sign up

Export Citation Format

Share Document