scholarly journals Sum-of-squares based observer design for polynomial systems with a known fixed time delay

Kybernetika ◽  
2015 ◽  
pp. 856-873 ◽  
Author(s):  
Branislav Rehák
2019 ◽  
Vol 41 (15) ◽  
pp. 4311-4321 ◽  
Author(s):  
Mai Viet Thuan ◽  
Dinh Cong Huong ◽  
Nguyen Huu Sau ◽  
Quan Thai Ha

This paper addresses the problem of unknown input fractional-order functional state observer design for a class of fractional-order time-delay nonlinear systems. The nonlinearities consist of two parts where one part is assumed to satisfy both the one-sided Lipschitz condition and the quadratically inner-bounded condition and the other is not necessary to be Lipschitz and can be regarded as an unknown input, making the wider class of considered nonlinear systems. By taking the advantages of recent results on Caputo fractional derivative of a quadratic function, we derive new sufficient conditions with the form of linear matrix inequalities (LMIs) to guarantee the asymptotic stability of the systems. Four examples are also provided to show the effectiveness and applicability of the proposed method.


2021 ◽  
Vol 54 (4) ◽  
pp. 62-67
Author(s):  
Amália Mátyás ◽  
Zsófia Lendek

2000 ◽  
Vol 123 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Nader Jalili ◽  
Ebrahim Esmailzadeh

A new approach to optimal control of vehicle suspension systems, incorporating actuator time delay, is presented. The inclusion of time delay provides a more realistic model for the actuators, and the problem is viewed from a different perspective rather than the conventional optimal control techniques. The objective here is to select a set of feedback gains such that the maximum vertical acceleration of the sprung mass is minimized, over a wide band frequency range and when subjected to certain constraints. The constraints are dictated by the vehicle stability characteristics and the physical bounds placed on the feedback gains. Utilizing a Simple Quarter Car model, the constrained optimization is then carried out in the frequency domain with the road irregularities described as random processes. Due to the presence of the actuator time delay, the characteristic equation is found to be transcendental rather than algebraic, which makes the stability analysis relatively complex. A new scheme for the stability chart strategy with fixed time delay is introduced in order to address the stability issue. The stability characteristics are also verified utilizing other conventional methods such as the Michailov technique. Results demonstrate that the suspension system, when considering the effect of the actuator time delay, exhibits a completely different behavior.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Bing Liu ◽  
Ying Duan ◽  
Yinghui Gao

Many existing pest control models, which control pests by releasing natural enemies, neglect the effect that natural enemies may get killed. From this point of view, we formulate a pest control model with stage structure for the pest with constant maturation time delay (through-stage time delay) and periodic releasing natural enemies and natural enemies killed at different fixed time and perform a systematic mathematical and ecological study. By using the comparison theorem and analysis method, we obtain the conditions for the global attractivity of the pest-eradication periodic solution and permanence of the system. We also present a pest management strategy in which the pest population is kept under the economic threshold level (ETL) when the pest population is uniformly permanent. We show that maturation time delay, impulsive releasing, and killing natural enemies can bring great effects on the dynamics of the system. Numerical simulations confirm our theoretical results.


2018 ◽  
Vol 41 (7) ◽  
pp. 1993-2004
Author(s):  
Mohsen Rakhshan ◽  
Navid Vafamand ◽  
Mohammad Mehdi Mardani ◽  
Mohammad-Hassan Khooban ◽  
Tomislav Dragičević

This paper proposes a non-iterative state feedback design approach for polynomial systems using polynomial Lyapunov function based on the sum of squares (SOS) decomposition. The polynomial Lyapunov matrix consists of states of the system leading to the non-convex problem. A lower bound on the time derivative of the Lyapunov matrix is considered to turn the non-convex problem into a convex one; and hence, the solutions are computed through semi-definite programming methods in a non-iterative fashion. Furthermore, we show that the proposed approach can be applied to a wide range of practical and industrial systems that their controller design is challenging, such as different chaotic systems, chemical continuous stirred tank reactor, and power permanent magnet synchronous machine. Finally, software-in-the-loop (SiL) real-time simulations are presented to prove the practical application of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document