scholarly journals Bone drilling with internal gas cooling: Experimental and statistical investigation of the effect of cooling with CO2 on reduction of temperature rise due to drill bit wear

2021 ◽  
Vol 16 (2) ◽  
pp. 199-211
Author(s):  
E. Shakouri ◽  
H. Haghighi Hassanalideh ◽  
S. Fotuhi

Bone drilling is a major stage in immobilization of the fracture site. During bone drilling operations, the temperature may exceed the allowable limit of 47 °C, causing irrecoverable damages of thermal necrosis and seriously threatening the fracture treatment. One of the parameters affecting the temperature rise of the drilling site is the frequency of applying the drill bit and its extent of wear. The present study attempted to mitigate the effect of drill bit wear on the bone temperature rise through the internal gas cooling method via CO2 and to reduce the risk of incidence of thermal necrosis. To this end, drilling tests were conducted at three rotational speeds 1000, 2000, and 3000 r·min-1 in two states of without cooling and with internal gas cooling by CO2 through an internal coolant carbide drill bit, along with six drill bit states (new, used 10, 20, 30, 40, and 50 times) on a bovine femur bone. The results indicated that in the internal gas cooling state, as the number of drill bit applications increased from the new state to more than 50 times, the temperature of the hole site increased on average by ΔT = 2-3 °C (n = 1000 r·min-1), ΔT = 5-8 °C (n = 2000 r·min-1), and ΔT = 5-7 °C (n = 3000 r·min-1). Furthermore, the internal gas cooling method was able to significantly reduce the effect of the drill bit wear on the temperature rise of the drilling site and to resolve the risk of incidence of thermal necrosis regardless of the process parameters for drilling operations.

Author(s):  
Abdalla Abbas Said Abbas ◽  
Khaled Abou-El-Hossein

Bone drilling operations are carried out in hospitals in different surgical operations worldwide (e.g. orthopedic surgeries and fixing bone breakages). It is considered one of the most sensitive processes in biomedical engineering field. During drilling, the most critical problem is the rise in the temperature of the bone above the allowable limit. A Study showed that the allowable limit that must not be exceeded is 50oC. Moreover, if this limit is exceeded, the bone may sustain serious damage, namely, thermal necrosis (cell death in bone tissue). The research in this paper focuses on reducing the temperature rise during bone drilling. A study was conducted to observe the effect of the drill rotational speed, feed rate and drilling depth on the drill bit temperature during drilling of goat and cow bone. Experimental methods were engaged to optimise the drilling parameters in order to achieve an accepted level of drill bit temperature.


Author(s):  
Ehsan Shakouri ◽  
Hossein Haghighi Hassanalideh ◽  
Seifollah Gholampour

Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO2 and N2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.


2019 ◽  
Vol 18 (04) ◽  
pp. 583-594 ◽  
Author(s):  
Kadir Gok ◽  
Arif Gok ◽  
Yasin Kisioglu

Heat reveals during the bone drilling operations in orthopedic surgery because of friction between bone and surgical drill bit. The heating causes extremely important damages in bone and soft tissues. The heating has a critical threshold and it is known as 47∘C. If bone temperature value exceeds 47∘C, osteonecrosis occurs in bones and soft tissues. Many factors such as surgical drill bit geometry and material, drilling parameters, coolant has important roles for the temperature rise. Many methods are used to decrease the temperature rise. The most effective method among them is to use the coolant internally. Numeric simulations of a new driller system to avoid the overheating during the orthopedic operating processes were performed in this study. The numerical simulation with/without coolant was also performed using the finite element based software. Computer aided simulation studies were used to measure the bone temperatures occurred during the bone drilling processes. The outcomes from the simulations were compared with the experimental results. A good temperature level agreement between the experimental results and FEA simulations was found during the bone drilling process.


Author(s):  
Rajesh V Dahibhate ◽  
Santosh B Jaju ◽  
Rajendra I Sarode

Orthopedic surgeries use screw and plate fixations. Bone drilling is performed for smooth and minimum damage to bone surface during screw insertion. Bone drilling creates a hole with circular cross-section. This process involves cutting and material removal with a helical drill tool. Heat is generated at the drilling site due to cutting, shearing of bone material by drill tool and friction between drill tool and bone surface. Previous research studies found that if temperature at drilling site reaches 47°C and remains the same for one minute, irreversible cell damage i.e. thermal necrosis can occur. Thermal necrosis causes ring sequestrum around the pin; this leads to a vicious cycle involving secondary infection, discharge and pin loosening. This postoperative complication can only be rectified by removal of pin and sequestrum, curettage of the tract and pin replacement and so thermal necrosis- the root cause must be avoided and attended very seriously. To avoid thermal necrosis, postoperative complications and delay in patient rehabilitation, researchers are studying bone drilling in detail. In this review paper, a discussion is made on different innovative methods that are turning points in the study of thermal necrosis and the latest technologically improved equipment devised by researchers. These inventive methods have used experimental set ups, software-based simulations and training programs. The author also conducted experiments on female goat rib bone and based on these observations an improved drilling machine is suggested.


Author(s):  
Jianbo Sui ◽  
Naohiko Sugita ◽  
Mamoru Mitsuishi

This paper provides a methodology to develop a thermal model for predicting the temperature rise during surgical drilling of bone. The thermal model consists of heat generation calculation based on classical machining theory and development of governing equations of heat transfer individually for drill bit and bone. These two governing equations are coupled by shared boundary conditions. Finite-difference method is utilized to approximate the thermal model and effects of drill bit geometry and process parameters on temperature rise are evaluated by comparison with experiments. The simulated results fit well with experiments with respect to different drill bit geometry (<3.02 °C) and process parameters (<4.32 °C).


2013 ◽  
Vol 28 (10) ◽  
pp. 1065-1070 ◽  
Author(s):  
Josu Soriano ◽  
Ainhara Garay ◽  
Kentaro Ishii ◽  
Naohiko Sugita ◽  
Pedro Jose Arrazola ◽  
...  

2018 ◽  
Vol 18 (03) ◽  
pp. 1850026 ◽  
Author(s):  
PONNUSAMY PANDITHEVAN ◽  
NATARAJAN VINAYAGA MURUGA PANDY ◽  
CHINNUSAMY PALANIVEL

Thermal osteonecrosis of bone in drilling procedure is caused by improper parameters which can lead to poor bone-implant integration and loss of fixation. In this study, Taguchi technique for parameter optimization and multiple regression models for temperature prediction were employed. The main aim of the study was to determine the optimal parameters of bone drilling to control the temperature rise below the thermal osteonecrosis threshold (47[Formula: see text]C) in respect of the bone density variations at different drilling directions. A 32 full factorial design with nine sets of parameters was used in the study. Drilling operations were performed along the longitudinal, radial and circumferential directions at the proximal-diaphysis, mid-diaphysis and distal-diaphysis regions of the 10 adult cadaveric femurs with different feed rates (40, 60 and 80[Formula: see text]mm/min) and spindle speeds (500, 1000 and 1500[Formula: see text]rpm) using 3.2[Formula: see text]mm diameter surgical drill bit. The in-situ drilling temperatures were measured with T-type thermocouple. The optimum drilling parameters for each drilling direction were determined from signal to noise ratios and the effect of each parameter was determined using analysis of variance. By using computed tomography scan data of patients, the proposed method is able to predict the temperature rise at the bone-drilling sites, optimal parameters and possibility for the occurrence of thermal osteonecrosis. This important tool could assist in reducing localized temperature induced from surgical drilling by up to 32% and 18[Formula: see text]C and as such significantly reduce associated osteonecrosis and improve patient outcome and quality of life.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Sign in / Sign up

Export Citation Format

Share Document