Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling

Author(s):  
Ehsan Shakouri ◽  
Hossein Haghighi Hassanalideh ◽  
Seifollah Gholampour

Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO2 and N2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

2021 ◽  
Vol 16 (2) ◽  
pp. 199-211
Author(s):  
E. Shakouri ◽  
H. Haghighi Hassanalideh ◽  
S. Fotuhi

Bone drilling is a major stage in immobilization of the fracture site. During bone drilling operations, the temperature may exceed the allowable limit of 47 °C, causing irrecoverable damages of thermal necrosis and seriously threatening the fracture treatment. One of the parameters affecting the temperature rise of the drilling site is the frequency of applying the drill bit and its extent of wear. The present study attempted to mitigate the effect of drill bit wear on the bone temperature rise through the internal gas cooling method via CO2 and to reduce the risk of incidence of thermal necrosis. To this end, drilling tests were conducted at three rotational speeds 1000, 2000, and 3000 r·min-1 in two states of without cooling and with internal gas cooling by CO2 through an internal coolant carbide drill bit, along with six drill bit states (new, used 10, 20, 30, 40, and 50 times) on a bovine femur bone. The results indicated that in the internal gas cooling state, as the number of drill bit applications increased from the new state to more than 50 times, the temperature of the hole site increased on average by ΔT = 2-3 °C (n = 1000 r·min-1), ΔT = 5-8 °C (n = 2000 r·min-1), and ΔT = 5-7 °C (n = 3000 r·min-1). Furthermore, the internal gas cooling method was able to significantly reduce the effect of the drill bit wear on the temperature rise of the drilling site and to resolve the risk of incidence of thermal necrosis regardless of the process parameters for drilling operations.


2019 ◽  
Vol 3 (s1) ◽  
pp. 105-106
Author(s):  
Jeffery Jay Howard Nielsen ◽  
Stewart A. Low ◽  
Philip S. Low

OBJECTIVES/SPECIFIC AIMS: The primary objective of this study was to evaluate the performance of a bone fracture targeted systemically administrable bone anabolic as a potential therapeutic for bone fracture repair. Currently all bone fracture repair therapeutic require local administration during surgery. However, the population that need the most assistance in repair bone fractures are not eligible for surgery. So, it was our goal to design an inject-able therapeutic to assist in bone fracture repair to reduce the invasiveness. The injectable nature of it allows for repair administration of the bone anabolic and for therapeutic effect throughout the entire bone fracture healing process. Targeting it to the bone fracture site reduces the toxicity and increases the efficacy. METHODS/STUDY POPULATION: METHODS To achieve the above objective, a bone mineral-(hydroxyapatite-) targeting oligopeptide was conjugated to the non-signaling end of an engineered parathyroid hormone related protein fragment 1-46 with substitutions at Glu22,25, Leu23,28,31, Aib29, Lys26,30 (ePTHrP). The negatively charged oligopeptide has been shown to target raw hydroxyapatite with remarkable specificity, while the attached PTHrP has been demonstrated to induce sustained and accelerated bone growth under control of endogenous morphogenic regulatory factors. The conjugate’s specificity arises from the fact that raw hydroxyapatite is only exposed whenever a bone is fractured, surgically cut, grafted, or induced to undergo accelerated remodeling. The hydroxyapatite-targeted conjugate can therefore be administered systemically (i.e. without invasive surgery or localized injection) and still accumulate on the exposed hydroxyapatite at the fracture site where it accelerates the healing process Murine in vivo experiments were conducted on female Swiss Webster mice (10 per group). Femoral fractures were induced with a 3-point bending device and stabilized. Mice were dosed with 3 nmol/kg/d of targeted-ePTHrP, non-conjugated (free) ePTHrP, or saline. Following a 4-week study, fracture callus densities were measured using microCT. Canine in vivo experiments were conducted on 1-year-old male beagles. Beagles underwent a 10 mm bilateral ulnar ostectomy. Two dogs in the treatment group and Three dogs in the control group were dosed daily with either targeted-ePTHrP 0.5nmol/kg/d or saline respectively. Dogs were x-rayed weekly for the first 6 weeks and then every other week thereafter. One tailed ANOVA followed by Dunnett’s post-hoc test was used to establish significance. All animal experiments were conducted as described in approved IACUC protocols. P<0.05 was considered significant. RESULTS/ANTICIPATED RESULTS: RESULTS SECTION: In the murine studies we observed a marked increase in fracture callus size and a 2-fold increase in bone deposition was observed in the targeted-ePTHrP group over the saline group (P<0.01). A significant doubling in bone density was also observed. Targeted-ePTHrP group fractured femurs were able to achieve their pre-fracture strength as early as 3 weeks compared to 9 weeks in the saline mice representing a 66% reduction in healing time. In the canine studies, we observe a significantly higher closure of the ostectomy gap than saline controls (P<0.05). In addition, no significant differences in weight are observed in the treatment vs. saline controls. No significant difference between the control group and treatment groups was found in a histological investigation of the organs. DISCUSSION/SIGNIFICANCE OF IMPACT: DISCUSSION: Although attempts have been made in developing a systemically administered fracture therapeutic for fracture repair, i.e. teriparatide, to date, no such anabolics have been approved for this use. In these studies there is evidence that anabolic activity was occurring at the fracture site, but at a level that did not meet FDA required end-points.2 It is plausible that if sufficient drug were to be delivered to a fracture site then improved fracture repair would be possible. In previous studies, we demonstrated fracture specific accumulation bone anabolics can be achieved by modifying the drug with acidic oligopeptides.3 Here, by modifying a safe, clinically proven, parathyroid hormone receptor agonist with an acidic oligopeptide we observe improved bone deposition and strength in mice. Furthermore, when administered to canine critical sized defect ostectomies, a more relevant and difficult model, we observe improved ostectomy closure. CLINICAL RELEVANCE:: The ability to accelerate bone fracture repair is a fundamental need that has not been addressed by conventional methods. By targeting bone anabolic agents to bone fractures, we can deliver sufficient concentrations of anabolic agent to the fracture site to accelerate healing, thus avoiding surgery and any ectopic bone growth associated with locally-applied bone anabolic agents.


2020 ◽  
Author(s):  
Jiazhen Zhang ◽  
Zhizhong Shang ◽  
Yanbiao Jiang ◽  
Kui Zhang ◽  
Xinggang Li ◽  
...  

Abstract Biodegradable metals hold promises for bone fracture repair. Their clinical translation requires pre-clinical evaluations including animal studies, which demonstrate the safety and performance of such materials prior to clinical trials. This evidence-based study investigates and analyzes the performance of bone fractures repair as well as degradation properties of biodegradable metals in animal models. Data were carefully collected after identification of population, interventions, comparisons, outcomes and study design, as well as inclusion criteria combining biodegradable metals and animal study. Twelve publications on pure Mg, Mg alloys and Zn alloys were finally included and reviewed after extraction from a collected database of 2122 publications. Compared to controls of traditional non-degradable metals or resorbable polymers, biodegradable metals showed mixed or contradictory outcomes of fracture repair and degradation in animal models. Although quantitative meta-analysis cannot be conducted because of the data heterogeneity, this systematic review revealed that the quality of evidence for biodegradable metals to repair bone fractures in animal models is ‘very low’. Recommendations to standardize the animal studies of biodegradable metals were proposed. Evidence-based biomaterials research could help to both identify reliable scientific evidence and ensure future clinical translation of biodegradable metals for bone fracture repair.


2021 ◽  
Author(s):  
Conall Quinn ◽  
Alexander Kopp ◽  
Ted J Vaughan

In this study, a coupled computational modelling framework for bone fracture repair is presented that enables predictions of both healing and remodelling phases of the fracture region and is used to investigate the role of an internal fixation plate on the long-term healing performance of a fracture tibia under a range of different conditions. It was found that introduction of a titanium plate allowed the tibia to undergo successful healing at higher loading conditions and fracture gaps, compared to the non-plated versions. While these plated cases showed faster rates of repair in the healing phase, their performance was substantially different once they entered the remodelling phase, with substan-tial regions of stress shielding predicted. This framework is one of the few im-plementations of both fracture healing and remodelling phases of bone repair and includes several innovative approaches to smoothing, time-averaging and time incrementation in its implementation, thereby avoiding any unwanted abrupt changes between tissue phenotypes. This provides a better representa-tion of tissue development in the fracture site when compared to fracture healing models alone and provides a suitable platform to investigate the long-term performance of orthopaedic fixation devices. This would enable the more effective design of permanent fixation devices and optimisation of the spatial and temporal performance of bioabsorbable implants


2016 ◽  
Vol 11 (6) ◽  
pp. 494-504 ◽  
Author(s):  
Jessica S. Hayes ◽  
Cynthia M. Coleman

Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.


Author(s):  
Yan Yin ◽  
Jiusheng Bao ◽  
Jinge Liu ◽  
Chaoxun Guo ◽  
Tonggang Liu ◽  
...  

Disc brakes have been applied in various automobiles widely and their braking performance has vitally important effects on the safe operation of automobiles. Although numerous researches have been conducted to find out the influential law and mechanism of working condition parameters like braking pressure, initial braking speed, and interface temperature on braking performance of disc brakes, the influence of magnetic field is seldom taken into consideration. In this paper, based on the novel automotive frictional-magnetic compound disc brake, the influential law of magnetic field on braking performance was investigated deeply. First, braking simulation tests of disc brakes were carried out, and then dynamic variation laws and mechanisms of braking torque and interface temperature were discussed. Furthermore, some parameters including average braking torque, trend coefficient and fluctuation coefficient of braking torque, average temperature, maximum temperature rise, and the time corresponding to the maximum temperature rise were extracted to characterize the braking performance of disc brakes. Finally, the influential law and mechanism of excitation voltage on braking performance were analyzed through braking simulation tests and surface topography analysis of friction material. It is concluded that the performance of frictional-magnetic compound disc brake is prior to common brake. Magnetic field is greatly beneficial for improving the braking performance of frictional-magnetic compound disc brake.


2018 ◽  
Vol 29 (11) ◽  
pp. 3800-3809 ◽  
Author(s):  
Mingding Wang ◽  
Soie Park ◽  
Yoonhee Nam ◽  
Jeffery Nielsen ◽  
Stewart A. Low ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1847 ◽  
Author(s):  
Hoon Moon ◽  
Sivakumar Ramanathan ◽  
Prannoy Suraneni ◽  
Chang-Seon Shon ◽  
Chang-Joon Lee ◽  
...  

Blast furnace slag (SL) is an amorphous calcium aluminosilicate material that exhibits both pozzolanic and latent hydraulic activities. It has been successfully used to reduce the heat of hydration in mass concrete. However, SL currently available in the market generally experiences pre-treatment to increase its reactivity to be closer to that of portland cement. Therefore, using such pre-treated SL may not be applicable for reducing the heat of hydration in mass concrete. In this work, the adiabatic and semi-adiabatic temperature rise of concretes with 20% and 40% SL (mass replacement of cement) containing calcium sulfate were investigated. Isothermal calorimetry and thermal analysis (TGA) were used to study the hydration kinetics of cement paste at 23 and 50 °C. Results were compared with those with control cement and 20% replacements of silica fume, fly ash, and metakaolin. Results obtained from adiabatic calorimetry and isothermal calorimetry testing showed that the concrete with SL had somewhat higher maximum temperature rise and heat release compared to other materials, regardless of SL replacement levels. However, there was a delay in time to reach maximum temperature with increasing SL replacement level. At 50 °C, a significant acceleration was observed for SL, which is more likely related to the pozzolanic reaction than the hydraulic reaction. Semi-adiabatic calorimetry did not show a greater temperature rise for the SL compared to other materials; the differences in results between semi-adiabatic and adiabatic calorimetry are important and should be noted. Based on these results, it is concluded that the use of blast furnace slag should be carefully considered if used for mass concrete applications.


Sign in / Sign up

Export Citation Format

Share Document