Formation mechanism of listric normal faults and calcite veins within the shale-dominant strata of the upper Jinju formation in the cretaceous Gyeongsang Basin, Korea

2016 ◽  
Vol 52 (4) ◽  
pp. 373-388
Author(s):  
Youngbeom Cheon ◽  
Sangmin Ha ◽  
Yunseong Lee ◽  
Sujin Ha ◽  
Hyoun Soo Lim ◽  
...  
GeoArabia ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 99-136
Author(s):  
Simon Virgo ◽  
Max Arndt ◽  
Zoé Sobisch ◽  
Janos L. Urai

ABSTRACT We present a high-resolution structural study on the dip slope of the southern flank of Jabal Shams in the central Oman Mountains. The objectives of the study were: (1) to test existing satellite-based interpretations of structural elements in the area; (2) prepare an accurate geological map; and (3) collect an extensive structural dataset of fault and bedding planes, fault throws, veins and joints. These data are compared with existing models of tectonic evolution in the Oman Mountains and the subsurface, and used to assess the applicability of these structures as analogs for fault and fracture systems in subsurface carbonate reservoirs in Oman. The complete exposure of clean rock incised by deep wadis allowed detailed mapping of the complex fault, vein and joint system hosted by Member 3 of the Cretaceous Kahmah Group. The member was divided into eight units for mapping purposes, in about 100 m of vertical stratigraphy. The map was almost exclusively based on direct field observations. It includes measurement of fault throw in many locations and the construction of profiles, which are accurate to within a few meters. Ground-truthing of existing satellite-based interpretations of structural elements showed that faults can be mapped with high confidence using remote-sensing data. The faults range into the subseismic scale with throws as little as a few decimeters. However, the existing interpretation of lineaments as cemented fractures was shown to be incorrect: the majority of these are open fractures formed along reactivated veins. The most prominent structure in the study area is a conjugate set of ESE-striking faults with throws resolvable from several centimeters to hundreds of meters. These faults contain bundles of coarse-grained calcite veins, which may be brecciated during reactivation. We interpret these faults to be a conjugate normal- to oblique fault set, which was rotated together with bedding during the folding of the Al Jabal al-Akhdar anticline. There are many generations of calcite veins with minor offset and at high-angle-to-bedding, sometimes in en-echelon sets. Analysis of clear overprinting relationships between veins at high-angle-to-bedding is consistent with the interpretations of Holland et al. (2009a); however we interpret the anticlockwise rotation of vein strike orientation to start before and end after the normal faulting. The normal faults post-date the bedding-parallel shear veins in the study area. Thus these faults formed after the emplacement of the Semail and Hawasina Nappes. They were previously interpreted to be of the same age as the regional normal- to oblique-slip faults in the subsurface of northern Oman and the United Arab Emirates, which evolved during the early deposition of the Campanian Fiqa Formation as proposed by Filbrandt et al. (2006). We interpret them also to be coeval with the Phase I extension of Fournier et al. (2006). The reactivation of these faults and the evolution of new veins was followed by folding of the Al Jabal al-Akhdar anticline and final uplift and jointing by reactivation of pre-existing microveins. Thus the faults in the study area are of comparable kinematics and age as those in the subsurface. However they formed at much greater depth and fluid pressures, so that direct use of these structures as analogs for fault and fracture systems in subsurface reservoirs in Oman should be undertaken with care.


2020 ◽  
Author(s):  
Daniel Muñoz-López ◽  
Gemma Alías ◽  
David Cruset ◽  
Irene Cantarero ◽  
Cédric M. Jonh ◽  
...  

Abstract. Calcite veins precipitated in the Estamariu thrust during two tectonic events decipher the temporal and spatial relationships between deformation and fluid migration in a long-lived thrust and determine the influence of basement rocks on the fluid chemistry during deformation. Structural and petrological observations constrain the timing of fluid migration and vein formation, whilst geochemical analyses (δ13C, δ18O, 87Sr/86Sr, clumped isotope thermometry and elemental composition) of the related calcite cements and host rocks indicate the fluid origin, pathways and extent of fluid-rock interaction. The first tectonic event, recorded by calcite cements Cc1a and Cc2, is related to the Alpine reactivation of the Estamariu thrust, and is characterized by the migration of meteoric fluids, heated at depth (temperatures between 56 and 98 °C) and interacted with crystalline basement rocks before upflowing through the thrust zone. During the Neogene extension, the Estamariu thrust was reactivated and normal faults and shear fractures with calcite cements Cc3, Cc4 and Cc5 developed. Cc3 and Cc4 precipitated from hydrothermal fluids (temperatures between 127 and 208 °C and between 102 and 167 °C, respectively) derived from crystalline basement rocks and expelled through fault zones during deformation. Cc5 precipitated from low temperature meteoric waters percolating from the surface through small shear fractures. The comparison between our results and already published data in other structures from the Pyrenees suggests that regardless of the origin of the fluids and the tectonic context, basement rocks have a significant influence on the fluid chemistry, particularly on the 87Sr/86Sr ratio. Accordingly, the cements precipitated from fluids interacted with crystalline basement rocks have significantly higher 87Sr/86Sr ratios (> 0.710) with respect to those precipitated from fluids that have interacted with the sedimentary cover (


2022 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Alexandra Wallenberg ◽  
Betrand Gaschot ◽  
John A. Luczaj

ABSTRACT Rattlesnake Mountain is a Laramide uplift cored by Archean gneiss that formed by offset along two reverse faults with opposing dips, the result being an asymmetric anticline with a drape fold of Cambrian–Cretaceous sediments. Rattlesnake Mountain was uplifted ca. 57 Ma and was a structural buttress that impeded motion of upper-plate blocks of the catastrophic Heart Mountain slide (49.19 Ma). North of Pat O’Hara Mountain anticline, Rattlesnake Mountain anticline has a central graben that formed ca. 52 Ma (U-Pb age on vein calcite in normal faults) into which O- and C-depleted fluids propagated upward with hydrocarbons. The graben is defined by down-dropped Triassic Chugwater shales atop the anticline that facilitated motion of Heart Mountain slide blocks of Paleozoic limestones dolomite (i.e., the Ordovician Bighorn Dolomite and Mississippian Madison Limestone) onto, and over, Rattlesnake Mountain into the Bighorn Basin. Heart Mountain fault gouge was also injected downward into the bounding Rattlesnake Mountain graben normal faults (U-Pb age ca. 48.8 ± 5 Ma), based on O and C isotopes; there is no anisotropy of magnetic susceptibility fabric present. Calcite veins parallel to graben normal faults precipitated from meteoric waters (recorded by O and C isotopes) heated by the uplifting Rattlesnake Mountain anticline and crystallized at 57 °C (fluid inclusions) in the presence of oil. Calcite twinning strain results from graben injectites and calcite veins are different; we also documented a random layer-parallel shortening strain pattern for the Heart Mountain slide blocks in the ramp region (n = 4; west) and on the land surface (n = 5; atop Rattlesnake Mountain). We observed an absence of any twinning strain overprint (low negative expected values) in the allochthonous upper-plate blocks and in autochthonous carbonates directly below the Heart Mountain slide surface, again indicating rapid motion including horizontal rotation about vertical axes of the upper-plate Heart Mountain slide blocks during the Eocene.


Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 237-251
Author(s):  
Antonin Bilau ◽  
Yann Rolland ◽  
Stéphane Schwartz ◽  
Nicolas Godeau ◽  
Abel Guihou ◽  
...  

Abstract. In the Western Alps, the Penninic frontal thrust (PFT) is the main crustal-scale tectonic structure of the belt. This thrust transported the high-pressure metamorphosed internal units over the non-metamorphosed European margin during the Oligocene (34–29 Ma). Following the propagation of the compression toward the European foreland, the PFT was later reactivated as an extensional detachment associated with the development of the High Durance extensional fault system (HDFS). This inversion of tectonic displacement along a major tectonic structure has been widely emphasized as an example of extensional collapse of a thickened collisional orogen. However, the inception age of the extensional inversion remains unconstrained. Here, for the first time, we provide chronological constraints on the extensional motion of an exhumed zone of the PFT by applying U–Pb dating on secondary calcites from a fault zone cataclasite. The calcite cement and veins of the cataclasite formed after the main fault slip event, at 3.6 ± 0.4–3.4 ± 0.6 Ma. Cross-cutting calcite veins featuring the last fault activity are dated at 2.6 ± 0.3–2.3 ± 0.3 Ma. δ13C and δ18O fluid signatures derived from these secondary calcites suggest fluid percolation from deep-seated reservoir at the scale of the Western Alps. Our data provide evidence that the PFT extensional reactivation initiated at least ∼ 3.5 Myr ago with a reactivation phase at ∼ 2.5 Ma. This reactivation may result from the westward propagation of the compressional deformation toward the external Alps, combined with the exhumation of external crystalline massifs. In this context, the exhumation of the dated normal faults is linked to the eastward translation of the HDFS seismogenic zone, in agreement with the present-day seismic activity.


2020 ◽  
Author(s):  
Marine Larrey ◽  
Frédéric Mouthereau ◽  
Emmanuel Masini ◽  
Sylvain Calassou ◽  
Aurélien Virgone ◽  
...  

<p>Since Miocene times, the crustal thinning in eastern Betics and the Alboran region associated with westward slab retreat led to the formation and exhumation of metamorphic domes and EW-directed narrow basins.</p><p>The Tabernas basin preserves a sedimentary records of the last stages of metamorphic domes exhumation (14 to 8 Ma). Structural constraints from fault patterns and sedimentary archives show evidence in the field for E-W strike-slip faults that developed close to dome-basin contacts. The evolution of strike-slip faulting and extensional basins reveals strain partitioning during the late Miocene that is consistent with the present-day regional NNW-directed compression and WSW-directed/orogen-parallel extension that result from the NW-SE Africa-Europe plate convergence. A regional cross-section further emphasizes the role of crustal-scale strike-slip faulting and slab detachment and delamination under the Alboran domain.</p><p>Calcite veins that developed during the orogen-parallel extension in the metamorphic basement and the Tortonian sedimentary rocks show a wide variety of stable isotopes ratios. Calcite cements have δ<sup>18</sup>O values ranging from -17.23‰ to -5.30‰ for, and from -15.77‰ to -1.6‰ for δ<sup>13</sup>C isotopic ratios. This patterns is interpreted to reflect the increase of freshwater input buffered by the composition of host carbonate rocks.</p><p>Continental carbonates of Quaternary ages are widespread in the Tabernas basin. Travertines show a close structural relationship with N170 and N50 normal faults, implying tectonically-controlled Ca/CO<sub>2</sub> leakages. Their δ<sup>13</sup>C values are compatible with a hydrothermal origin from a deep-seated carbon source (δ<sup>18</sup>O median of -7.5‰, δ<sup>13</sup>C median of 2.1‰). Degassing associated with regional volcanism from the Serravallian until the Tortonian-Messinian ages is likely to be also the main vector of recent CO<sub>2</sub> storages in rocks. The U-Th ages of travertines, ranging from 8ka ± 0.2 to 354ka ±76, further outline interactions with captive aquifer from 350ka and subsequent Ca/CO<sub>2</sub> leakages due to geodynamic changes.</p>


2000 ◽  
Vol 12 (3-4) ◽  
pp. 227-240 ◽  
Author(s):  
C. M. dePolo ◽  
J. G. Anderson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document