scholarly journals Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential

2016 ◽  
Vol 15 (5) ◽  
pp. 237-244
Author(s):  
Dong-Il Seo ◽  
Jae-Bong Lee
Author(s):  
Chris San Marchi ◽  
Brian P. Somerday

Type 316/316L austenitic stainless steels are considered the benchmark for resistance to hydrogen embrittlement in gaseous hydrogen environments. Type 316/316L alloys are used extensively in handling systems for gaseous hydrogen, which has created engineering basis for its use. This material class, however, is relatively expensive compared to other structural metals including other austenitic stainless steels, thus the hydrogen fuel cell community seeks lower-cost alternatives. Nickel content is an important driver of cost and hydrogen-embrittlement resistance; the cost of austenitic stainless steels is largely determined by nickel content, while high nickel content generally improves resistance to hydrogen embrittlement. These circumstances create the perception that less-expensive grades of austenitic stainless steels are not appropriate for hydrogen service. While other grades of austenitic stainless steels are generally more susceptible to hydrogen embrittlement, in many cases the hydrogen-affected properties are superior to the properties of materials that are considered acceptable, such as aluminum alloys and A-286 austenitic stainless steel. In this paper, the properties of a variety of austenitic stainless steels are compared with the aim of promoting the consideration of a wider range of austenitic stainless steels to reduce cost and reduce weight of high-pressure components for hydrogen service.


2018 ◽  
Vol 941 ◽  
pp. 679-685
Author(s):  
Kazuyoshi Saida ◽  
Tomo Ogura

The hot cracking (solidification cracking) susceptibility in the weld metals of duplex stainless steels were quantitatively evaluated by Transverse-Varestraint test with gas tungsten arc welding (GTAW) and laser beam welding (LBW). Three kinds of duplex stainless steels (lean, standard and super duplex stainless steels) were used for evaluation. The solidification brittle temperature ranges (BTR) of duplex stainless steels were 58K, 60K and 76K for standard, lean and super duplex stainless steels, respectively, and were comparable to those of austenitic stainless steels with FA solidification mode. The BTRs in LBW were 10-15K lower than those in GTAW for any steels. In order to clarify the governing factors of solidification cracking in duplex stainless steels, the solidification segregation behaviours of alloying and impurity elements were numerically analysed during GTAW and LBW. Although the harmful elements to solidification cracking such as P, S and C were segregated in the residual liquid phase in any joints, the solidification segregation of P, S and C in LBW was inhibited compared with GTAW due to the rapid cooling rate in LBW. It followed that the decreased solidification cracking susceptibility of duplex stainless steels in LBW would be mainly attributed to the suppression of solidification segregation of P, S and C.


1985 ◽  
Vol 21 (1) ◽  
pp. 25-30 ◽  
Author(s):  
N. A. Sorokina ◽  
T. K. Sergeeva ◽  
Yu. I. Rusinovich ◽  
I. A. Rastorgueva ◽  
V. I. Gal'tsova ◽  
...  

Author(s):  
C. San Marchi ◽  
L. A. Hughes ◽  
B. P. Somerday ◽  
X. Tang

Austenitic stainless steels have been extensively tested in hydrogen environments. These studies have identified the relative effects of numerous materials and environmental variables on hydrogen-assisted fracture. While there is concern that welds are more sensitive to environmental effects than the non-welded base material, in general, there have been relatively few studies of the effects of gaseous hydrogen on the fracture and fatigue resistance of welded microstructures. The majority of published studies have considered welds with geometries significantly different from the welds produced in assembling pressure manifolds. In this study, conventional, uniaxial tensile testing was used to characterize tubing of type 316L austenitic stainless steel with an outside diameter of 6.35 mm. Additionally, orbital tube welds were produced and tested to compare to the non-welded tubing. The effects of internal hydrogen were studied after saturating the tubes and orbital welds with hydrogen by exposure to high-pressure gaseous hydrogen at elevated temperature. The effects of hydrogen on the ductility of the tubing and the orbital tube welds were found to be similar to the effects observed in previous studies of type 316L austenitic stainless steels.


Sign in / Sign up

Export Citation Format

Share Document