scholarly journals Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue

2015 ◽  
Vol 3 (6) ◽  
pp. e12415 ◽  
Author(s):  
R. Grace Walton ◽  
Brian S. Finlin ◽  
Jyothi Mula ◽  
Douglas E. Long ◽  
Beibei Zhu ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Michelle S. Dotzert ◽  
Michael R. Murray ◽  
Matthew W. McDonald ◽  
T. Dylan Olver ◽  
Thomas J. Velenosi ◽  
...  

2013 ◽  
Vol 305 (4) ◽  
pp. E496-E506 ◽  
Author(s):  
M. H. Reichkendler ◽  
P. Auerbach ◽  
M. Rosenkilde ◽  
A. N. Christensen ◽  
S. Holm ◽  
...  

Physical exercise increases peripheral insulin sensitivity, but regional differences are poorly elucidated in humans. We investigated the effect of aerobic exercise training on insulin-stimulated glucose uptake in five individual femoral muscle groups and four different adipose tissue regions, using dynamic (femoral region) and static (abdominal region) 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT methodology during steady-state insulin infusion (40 mU·m−2·min−1). Body composition was measured by dual X-ray absorptiometry and MRI. Sixty-one healthy, sedentary [V̇o2max 36(5) ml·kg−1·min−1; mean(SD)], moderately overweight [BMI 28.1(1.8) kg/m2], young [age: 30(6) yr] men were randomized to sedentary living (CON; n = 17 completers) or moderate (MOD; 300 kcal/day, n = 18) or high (HIGH; 600 kcal/day, n = 18) dose physical exercise for 11 wk. At baseline, insulin-stimulated glucose uptake was highest in femoral skeletal muscle followed by intraperitoneal visceral adipose tissue (VAT), retroperitoneal VAT, abdominal (anterior + posterior) subcutaneous adipose tissue (SAT), and femoral SAT ( P < 0.0001 between tissues). Metabolic rate of glucose increased similarly (∼30%) in the two exercise groups in femoral skeletal muscle (MOD 24[9, 39] μmol·kg−1·min−1, P = 0.004; HIGH 22[9, 35] μmol·kg−1·min−1, P = 0.003) (mean[95% CI]) and in five individual femoral muscle groups but not in femoral SAT. Standardized uptake value of FDG decreased ∼24% in anterior abdominal SAT and ∼20% in posterior abdominal SAT compared with CON but not in either intra- or retroperitoneal VAT. Total adipose tissue mass decreased in both exercise groups, and the decrease was distributed equally among subcutaneous and intra-abdominal depots. In conclusion, aerobic exercise training increases insulin-stimulated glucose uptake in skeletal muscle but not in adipose tissue, which demonstrates some interregional differences.


2018 ◽  
Vol 315 (3) ◽  
pp. R461-R468 ◽  
Author(s):  
Adam R. Konopka ◽  
Christopher A. Wolff ◽  
Miranda K. Suer ◽  
Matthew P. Harber

Intermuscular adipose tissue (IMAT) is associated with impaired skeletal muscle contractile and metabolic function. Myostatin and downstream signaling proteins such as cyclin-dependent kinase 2 (CDK2) contribute to the regulation of adipose and skeletal muscle mass in cell culture and animals models, but this relationship remains incompletely understood in humans. The purpose of this study was to determine if the infiltration of IMAT was associated with skeletal muscle myostatin and downstream proteins before and after 12 wk of aerobic exercise training (AET) in healthy older women (OW; 69 ± 2 yr), older men (OM; 74 ± 3 yr), and young men (YM; 20 ± 1 yr). We found that the infiltration of IMAT was correlated with myostatin and phosphorylated CDK2 at tyrosine 15 [P-CDK2(Tyr15)]. IMAT infiltration was greater in the older subjects and was associated with lower skeletal muscle function and exercise capacity. After 12 wk of AET, there was no change in body weight. Myostatin and P-CDK2(Tyr15) were both decreased after AET, and the reduction in myostatin was associated with decreased IMAT infiltration. The decrease in myostatin and IMAT occurred concomitantly with increased exercise capacity, skeletal muscle size, and function after AET. These findings demonstrate that the reduction in IMAT infiltration after AET in weight stable individuals was accompanied by improvements in skeletal muscle function and exercise capacity. Moreover, the association between myostatin and IMAT was present in the untrained state and in response to exercise training, strengthening the potential regulatory role of myostatin on IMAT.


2007 ◽  
Vol 585 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Timothy P. Gavin ◽  
Rebecca S. Ruster ◽  
John A. Carrithers ◽  
Kevin A. Zwetsloot ◽  
Raymond M. Kraus ◽  
...  

2010 ◽  
Vol 65A (11) ◽  
pp. 1201-1207 ◽  
Author(s):  
A. R. Konopka ◽  
M. D. Douglass ◽  
L. A. Kaminsky ◽  
B. Jemiolo ◽  
T. A. Trappe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document