Study on characteristics of AlTiN and TiCN coating layers deposited on carbide cutting tools in hard turning of steel: experimental, simulation and optimisation

Author(s):  
Armansyah Ginting ◽  
Che Hassan Che Haron ◽  
Mohammed Nouari ◽  
Issam Bencheikh
2011 ◽  
Vol 418-420 ◽  
pp. 1482-1485 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz Al Hazza ◽  
Delvis Agusman ◽  
Agus Geter Edy Sutjipto

The current work presents the development of cost model for tooling during high speed hard turning of AISI 4340 hardened steel using regression analysis. A set of experimental data using ceramic cutting tools, composed approximately of Al2O3 (70%) and TiC (30%) on AISI 4340 heat treated to a hardness of 60 HRC was obtained in the following design boundary: cutting speeds (175-325 m/min), feed rate (0.075-0.125 m/rev), negative rake angle (0 to -12) and depth of cut of (0.1-0.15) mm. The output data is used to develop a new model in predicting the tooling cost using in terms of cutting speed, feed rate, depth of cut and rake angle. Box Behnken Design was used in developing the model. Predictive regression model was found to be capable of good predictions the tooling cost within the boundary design.


Author(s):  
Kivilcim Buyukhatipoglu ◽  
Ismail Lazoglu ◽  
Hubert Kratz ◽  
Fritz Klocke

In precision machining, due to the recent developments on the cutting tools, machine tool structural rigidity and improved CNC controllers, hard turning is an emerging process as an alternative to some of the grinding processes by providing reductions in costs and cycle-times. In industrial environments, hard turning is established for geometry features of parts with low to medium requirements on part quality. Better and deeper understanding of cutting forces, stresses and temperature fields, temperature gradients created during the machining are very critical for achieving highest quality products and high productivity in feasible cycle times. In order to enlarge the capability profile of the hard turning process, this paper introduces to prediction models of mechanical and thermal loads during turning of 51CrV4 with hardness of 68 HRC by CBN tool. The shear flow stress, shear and friction angles are determined from the orthogonal cutting tests. Cutting force coefficients are determined from orthogonal to oblique transformations. Cutting forces and surface profiles are predicted and compared with experimental measurements.


Author(s):  
Radu Pavel ◽  
Keith Sinram ◽  
Dana Combs ◽  
Jim Pillar ◽  
Ioan Marinescu

Hard turning is the process to watch in many industries, as it is a perfect candidate for the actual trends toward automation and flexible manufacturing. However, there are still many possible conjunctures created by different geometries or materials of the workpieces versus different types of cutting tools with effect on workpiece surface quality, tool wear, machine tool vibrations, etc. These insufficiently explored combinations make manufacturers hesitate to adopt hard turning as a finishing process. This paper brings new findings concerning the effect of cutting parameters and tool nose radius variations on surface finish as a result of continuous and interrupted hard turning. The considered workpieces are a camshaft made of AISI 1117 steel at 62 HRC for continuous cutting, and a spline shaft made of AISI 1137 steel at 48 HRC for interrupted cutting. Two types of PcBN cutting tools are used for both types of component parts. The investigation highlights the differences between the ideal, geometrically determined, surface roughness Ra and the experimental results, as well as the differences recorded between the continuous and interrupted cutting situations. The factorial experimentation technique was employed taking the resulting surface rughness (Ra) as a response variable. The influence of tool wear was finally considered in the analysis of the predicted values of roughness obtained through characteristic regression equations. A significant difference of roughness evolution versus tool wear was recorded for the continuous and interrupted surfaces. The analysis was completed based on profilometry and light interferometry measurements as well as optical and SEM microscopy observations.


2014 ◽  
Vol 966-967 ◽  
pp. 152-167 ◽  
Author(s):  
Alejandro Pereira ◽  
Javier Martínez ◽  
Maria Teresa Prado ◽  
José A. Pérez ◽  
Thomas Mathia

The wear of TiCN coating carbide cutting tools (Sandvik® Grade 1010 and 4220) in different hard-milling machining conditions was monitored, analyzed, and discussed for AISI H13 steel. This material is commonly used in the forge industry in order to optimize the manufacturing process according to a qualimetry/cost compromise criterion. AISI H13 steel generally is used in modern production for high wear-resistant dies and molds. One of the most basic and primary geometric shapes in the manufacture of molds and die cavities is the geometry known as "inclined plane." Experimental investigations were carried out on a "mold model" design with the aim of analyzing and optimizing the principal manufacturing conditions. The tests are dependent on manufacturing factors, particularly their impactin a complex tribological process. Five clearly defined different surfaces of the hardened AISI H13 steel model mold, with appropriate geometries were studied; i) vertical downward; ii) curved downward; iii) horizontal; iv) curved upward; and v) vertical upward.The analysis of cutting tool wear during this process was based on computerized measurements of visually observable wear and power consumption. Morphological investigations of the surface topography for the cutting tool, as well as of the work-piece surfaces, were systematically carried out. Moreover, the interactions with simultaneously measured energy consumption during the process are also explicated in the present study and therefore tentative methods to optimize hard-milling machining are offered.


2011 ◽  
Vol 5 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Berend Denkena ◽  
◽  
Jens Köhler ◽  
Roland Meyer ◽  
Jan-Hendrik Stiffel

Tool wear during hard machining leads to unfavourable changes in the workpiece surface and subsurface layers. Due to increasing flank wear, thermal and mechanical loads affect the microstructure and the residual stress state of the workpiece subsurface. These effects cause a reduction in the lifetime of the machined components during operation. This article presents an approach of modified corner radii of cutting tools for hard turning processes to change the tool wear progression and the influence on the machined subsurface layers. Hereby the size and direction of the contact length of the cutting edge is adjusted as well as the specific load during machining. The results show the potential of controlling the tool wear and the workpiece subsurface properties by the contact conditions of the tool-workpiece interface during hard turning.


Sign in / Sign up

Export Citation Format

Share Document