Deposition temperature effect on structural and gas sensing properties of TeO2 thin films

Author(s):  
M. Manouchehrian
2011 ◽  
Vol 492 ◽  
pp. 300-303
Author(s):  
Fu Jian Ren ◽  
Yi Sun ◽  
Liang Huang ◽  
Yun Han Ling ◽  
Jia You Feng

Crystalline anatase TiO2thin films were obtained on glass substrates at 60°C, 75°C and 90°C, respectively, by liquid phase deposition (LPD) method without subsequent heat treatment. X-ray diffraction (XRD), atomic force microscopy (AFM) and UV-Vis spectrophotometer were used to characterize the as-synthesized TiO2thin films. The H2sensing properties of the TiO2thin films based sensors were investigated. The results show that the gas sensors signal Ra/Rg (Ra: resistance in air, Rg: resistance in a sample gas) decreases with the increasing deposition temperature. The TiO2thin films obtained at deposition temperature of 60°C exhibited the maximum H2gas response at 350°C, and the magnitude of the sensor signal and the response time for 500ppm H2was 1.25 and 17s, respectively.


2021 ◽  
Vol 127 (4) ◽  
Author(s):  
Irmak Karaduman Er ◽  
Memet Ali Yıldırım ◽  
H. Hasan Örkçü ◽  
Aytunç Ateş ◽  
Selim Acar

2015 ◽  
Vol 14 (04) ◽  
pp. 1550011 ◽  
Author(s):  
A. Sharma ◽  
M. Tomar ◽  
V. Gupta ◽  
A. Badola ◽  
N. Goswami

In this paper gas sensing properties of 0.5–3% polyaniline (PAni) doped SnO 2 thin films sensors prepared by chemical route have been studied towards the trace level detection of NO 2 gas. The structural, optical and surface morphological properties of the PAni doped SnO 2 thin films were investigated by performing X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Raman spectroscopy measurements. A good correlation has been identified between the microstructural and gas sensing properties of these prepared sensors. Out of these films, 1% PAni doped SnO 2 sensor showed high sensitivity towards NO 2 gas along with a sensitivity of 3.01 × 102 at 40°C for 10 ppm of gas. On exposure to NO 2 gas, resistance of all sensors increased to a large extent, even greater than three orders of magnitude. These changes in resistance upon removal of NO 2 gas are found to be reversible in nature and the prepared composite film sensors showed good sensitivity with relatively faster response/recovery speeds.


2011 ◽  
Vol 520 (3) ◽  
pp. 932-938 ◽  
Author(s):  
S. Öztürk ◽  
N. Kılınç ◽  
N. Taşaltin ◽  
Z.Z. Öztürk

2017 ◽  
Vol 127 ◽  
pp. 38-46 ◽  
Author(s):  
Dilip L. Kamble ◽  
Namdev S. Harale ◽  
Vithoba L. Patil ◽  
Pramod S. Patil ◽  
Laxman D. Kadam

2018 ◽  
Vol 43 (50) ◽  
pp. 22756-22764 ◽  
Author(s):  
Stanislav Haviar ◽  
Jiří Čapek ◽  
Šárka Batková ◽  
Nirmal Kumar ◽  
Filip Dvořák ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document