Modelling of MRR and hole taper for ultrasonic assisted jet electrochemical micro-drilling process using Buckingham's π theorem

Author(s):  
Pulak M. Pandey ◽  
Harsha Goel ◽  
Usharani Rath
Author(s):  
Harsha Goel ◽  
Usharani Rath ◽  
Pulak M Pandey

Ultrasonic-assisted jet electrochemical micro drilling is an advanced variant of electrochemical machining to drill micro holes quickly and efficiently. The present article deals with the modelling and simulation of the integration of ultrasonic vibration with the conventional jet electrochemical micro drilling process. Multi-physics-based modelling and simulation approach has been used in the present work. The flow pattern of electrolyte jet was analysed for both jet electrochemical micro drilling and ultrasonic-assisted jet electrochemical micro drilling processes. The simulation results were validated with the previous experimental findings of ultrasonic-assisted jet electrochemical micro drilling process. It was found that the material removal rate (MRR) improved significantly as the ultrasonic wave got superimposed onto the electrolyte jet. In addition to that, voltage and concentration of the electrolyte also played vital roles in improving the MRR.


2019 ◽  
Vol 18 (03) ◽  
pp. 413-434
Author(s):  
Harsha Goel ◽  
Pulak M. Pandey

This article presents an experimental study of a recently developed process, namely, ultrasonic assisted jet electrochemical micro-drilling (UAJet-ECMD) using pulsed DC voltage power supply. The goal of the work was to examine the effect of pulsed DC voltage on the performance of UAJet-ECMD process. In the previous work carried out by the authors, the process has been studied using the continuous DC voltage. The pulse “on” time (pulsed DC voltage), electrolyte pressure and pulse “on” time (ultrasonic vibrations) were selected as the process parameters, whereas material removal rate (MRR) and hole taper were chosen as process responses. It was found that the pulse “on” time (pulsed DC voltage) had crucial effect on the MRR as well as on the hole taper. MRR and hole taper were both found to increase with rise in pulse “on” time (pulsed DC voltage). Optimization of process responses of UAJet-ECMD process was done. The responses obtained for optimized set of process parameters were verified and found in good conformity with the experimental results.


2019 ◽  
Vol 57 (20) ◽  
pp. 6292-6314 ◽  
Author(s):  
Jianjun Wang ◽  
Yizhong Ma ◽  
Fugee Tsung ◽  
Gang Chang ◽  
Yiliu Tu

2013 ◽  
Vol 549 ◽  
pp. 503-510 ◽  
Author(s):  
Gianluca D'Urso ◽  
Giancarlo Maccarini ◽  
C. Merla

The recent miniaturization trend in manufacturing, has enhanced the production of new and highly sophisticated systems in various industrial fields. In recent years, machining of the so called difficult to cut materials has become an important issue in several sectors. Micro Electrical Discharge Machining (micro-EDM) thanks to its contactless nature, is one of the most important technologies for the machining of this type of materials and it can be considered as one of the most promising manufacturing technologies for the fabrication of micro components. One of the most relevant applications of micro-EDM is micro-drilling. Micro holes in fact, are widely used for example in micro-electromechanical systems (MEMS), serving as channels or nozzles to connect two micro-features, and in micro-mechanical components. The present study is about micro drilling of metal plates by means of micro-EDM technology. In particular, the aim of this work is to investigate the effects of the downsizing of the micro holes diameter on the drilling performances. The influence of the reduction of the diameters in terms of both process performances (e.g., tool wear, taper rate, diametrical overcut) and general quality of the holes was investigated. Steel plates having thickness equal to 0.8 mm were taken into account. The drilling process was carried out using a micro-EDM machine Sarix SX 200 with carbide electrodes having diameter equal to 300, 200, 100 and 50 μm. Since the standard electrodes adopted in this study had a diameter equal to 300 μm, a wire EDM unit was used to obtain the other electrodes. The relationship between the process parameters considered the most significant and the final output, was studied. Furthermore, the geometrical and dimensional properties of the micro-holes were analyzed using both optical and scanning electron microscopes. In particular, it is demonstrated that the diameter size has a significant influence on the final value of the diametrical overcut while peak current and frequency parameters have a negligible effect.


2010 ◽  
Vol 450 ◽  
pp. 292-295
Author(s):  
Ye Hong Dong ◽  
Dong Xiang ◽  
Guang Hong Duan

In order to address the problem of quality control faced in multi-type and small-batch manufacturing mode, the method based on Bayesian Network (BN) is proposed. The building, learning and evolving method as well as the quality prediction and diagnosis method of BN model are described in this paper. The combination of BN model and Shewhart control chart is also mentioned. The model building and evolving method was conducted in PCB micro-drilling process as example, verifying that the prediction accuracy increases with the evolved model. The drilling quality prediction was compared with that obtained through regression analysis and artificial neural network. The advantage of BN model in advanced manufacturing is proved.


Manufacturing ◽  
2003 ◽  
Author(s):  
Anping Guo ◽  
Steve Batzer ◽  
John Roth

In this paper, the dynamic characteristics of micro-drilling process under different cutting conditions and the resulting correlation to tool wear have been studied. Two types of drills, three spindle speeds and two kinds of workpiece materials were used. In-process cutting forces and accelerations were measured. The signals were analyzed in both the time and frequency domains. Some interesting phenomena were observed in the dynamic time-history response during drilling. Progressive functions with the proper order were obtained to describe the curve of the average thrust force with the number of the holes drilled. Dynamic features which were sensitive to tool wear were found. The changing trends of these dynamic features as the drill wear progresses show a feasibility to develop an on-line drill wear monitoring system by evaluating the changes in dynamic features.


Author(s):  
Xiao-Xiang Zhu ◽  
Wen-Hu Wang ◽  
Rui-Song Jiang ◽  
Yi-Feng Xiong ◽  
Xiao-Fen Liu

Sign in / Sign up

Export Citation Format

Share Document