Numerical simulation of regimes of induction heating and cooling in view of phase transformations and residual stresses for superficial high intensive hardening of details

2007 ◽  
Vol 29 (1/2/3/4) ◽  
pp. 124
Author(s):  
Alexander Lepeshkin ◽  
Stepan Lepeshkin
2011 ◽  
Vol 681 ◽  
pp. 79-84 ◽  
Author(s):  
A.M.Akbari Pazooki ◽  
M.J.M. Hermans ◽  
I.M. Richardson

Dual phase steel consists of martensite embedded in a ferrite matrix. The material experiences high heating and cooling rates during welding, which alter the microstructure significantly. In this work the effects of solid state phase transformations on the prediction of residual stresses and distortion during welding of DP600 steel is investigated. Phase fractions have been calculated implicitly using continuous cooling time (CCT) diagrams. The results of the model are compared with experimental measurements for bead-on-plate welds made on DP600 sheets. It is found that the volume changes and the increase of the strength due to the martensitic transformation have both a significant effect on the residual stress and distortion level although in opposite directions. Martensitic phase transformations in DP600 steel tend to reduce tensile residual stresses in the weld metal.


2006 ◽  
Vol 524-525 ◽  
pp. 827-832 ◽  
Author(s):  
Alex P. Warren ◽  
Steve K. Bate ◽  
Richard Charles ◽  
C.T. Watson

The accurate prediction of the residual stresses present in welded structures can be of great importance to the fracture assessment of such components. Therefore, a large amount of benefit can be gained from improving techniques for measuring and numerically analysing these stresses. In recent years many advances have been made in the field of analysing residual stresses using finite element methods. That said, very little work has been conducted on the accurate modelling of welded ferritic components. This is largely due to the added complication of phase transformations that occur during the heating and cooling of such steels. The objective of the work presented in this paper was to improve understanding of the effect that phase transformations have on residual stresses present within welded ferritic structures. This was conducted by simulating such welding processes using the finite element package SYSWELD. An investigation was conducted to determine how phase transformations, and therefore residual stresses, are affected by the welding process used. Phase transformation and material property data available within SYSWELD were used for this analysis. An autogenously welded beam provided a simple basis for this qualitative investigation. In the future the manufacture and measurement of suitable test-pieces will enable these simulations to be validated.


2020 ◽  
Vol 321 ◽  
pp. 03036
Author(s):  
Lionel Depradeux ◽  
Corentin Robitaille ◽  
Gilles Duval ◽  
Luc Eckenfelder ◽  
Camille Locatelli

The Rapid Additive Forging (RAF) process is a Direct Energy Deposition (DED) Additive Manufacturing (AM) process, based on the deposition of a Titanium alloy on a substrate plate. This process has been developed for the production of Titanium parts of aeronautic components. In this study, a Finite Element (FE) numerical simulation methodology has been established to perform a fast analysis of the RAF process, including full 3D-transient thermal-metallurgical and mechanical numerical simulations. Thus, residual stresses and distortions caused by the process can be estimated. Different modelling strategies have been compared in order to find a balance between computation time and accuracy. Analyses include the effects of phase transformations in the Titanium alloy. First analyses have been performed on a simple geometry of welding wall. The influences of the material activation modelling strategy on the thermal and mechanical results have been investigated. The effects of phase transformations on residual stresses and distortions are also discussed. Then a specimen with a more complex geometry has been considered in the analysis, including the effect of different deposition paths. A full 3D simulation of the whole deposition process has been compared with several simplified computation procedures, including a reduction of the number of layers considered in the simulation.


Author(s):  
A. P. Warren ◽  
I. Symington ◽  
S. K. Bate ◽  
J. A. Francis ◽  
M. Turski ◽  
...  

The continued safe and reliable operation of plant invariably has to consider the assessment of defects in welded structural components. This often requires some estimate of the residual stresses that have developed during the welding fabrication process. Increases in the computational power available to finite element analysts have made the prediction of welding residual stresses using finite element methods an increasingly viable option. Consequently recent years have seen many advances in the field of residual stress modelling. However, relatively little work has been conducted on the accurate modelling of welded ferritic components. This is largely due to the added complications associated with the solid-state phase transformations that occur during the heating and cooling of such steels. Against this background, a programme of work has been undertaken in order to investigate the effects that phase transformations have on the development of residual stresses in ferritic components and develop methods for their simulation. To facilitate this, generic components of increasing complexity are being studied. Reported in this paper is the first phase of this programme which considers SA508 beam specimens. These specimens have been subjected to autogenous TIG welds using two different torch travel speeds. In order to predict the resultant residual stresses, simulations have been conducted using the commercial finite element package SYSWELD. These predicted stresses are then compared with residual stress measurements conducted using the neutron diffraction technique.


2015 ◽  
Vol 57 (7-8) ◽  
pp. 628-634
Author(s):  
Jing Chen ◽  
Liying Wang ◽  
Zhendong Shi ◽  
Zhen Dai ◽  
Meiqing Guo

Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


1994 ◽  
Vol 116 (4) ◽  
pp. 550-555 ◽  
Author(s):  
M. Gremaud ◽  
W. Cheng ◽  
I. Finnie ◽  
M. B. Prime

Introducing a thin cut from the surface of a part containing residual stresses produces a change in strain on the surface. When the strains are measured as a function of the depth of the cut, residual stresses near the surface can be estimated using the compliance method. In previous work, the unknown residual stress field was represented by a series of continuous polynomials. The present paper shows that for stress states with steep gradients, superior predictions are obtained by using “overlapping piecewise functions” to represent the stresses. The stability of the method under the influence of random errors and a zero shift is demonstrated by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document