Effect of low-temperature isothermal holding on microstructure and mechanical properties of hot rolled high carbon Nb microalloyed steel plate

2021 ◽  
Vol 62 (1/2/3) ◽  
pp. 111
Author(s):  
Indrajit Dey ◽  
Rajib Saha ◽  
Swarup Kumar Ghosh
2010 ◽  
Vol 129-131 ◽  
pp. 1022-1028
Author(s):  
Daavood Mirahmadi Khaki ◽  
A. Akbarzadeh ◽  
Amir Abedi

Thermo mechanical processing and controlled rolling of microalloyed steel sheets are affected by several factors. In this investigation, finishing temperature of rolling which is considered as the most effective parameters on the final mechanical properties of hot rolled products has been studied. For this purpose, three different finishing temperatures of 950, 900 and 850 °C below the non-recrystallization temperature and one temperature of 800 °C in the intercritical range were chosen. It is observed that decreasing the finishing temperature causes increase of strength and decrease of total elongation. This is accompanied by more grain refinement of microstructure and the morphology was changed from polygonal ferrite to acicular one. Findings of this research provide suitable connection among finishing temperature, microstructural features, and mechanical properties of hot rolled Nb-microalloyed steel sheets.


2010 ◽  
Vol 152-153 ◽  
pp. 1371-1376
Author(s):  
De Hui Zou ◽  
Zhi Fang Peng ◽  
Ping He Li ◽  
Ai Min Guo

The Effect of intercritical quencing on microstructure and mechanical properties of ultra low carbon heavy steel plate were studied by utilizing SEM, TEM, tensile and impact tests. The specimens were firstly subjected to an annealing treatment at 930 oC followed by quenching to ambient temperature, then were repeatedly annealing at the temperatures being varied in the range of 600~870 oC, and then repeatedly quenched to ambient temperature in cold water. When the intercritical quenching was just slightly above Ac1, the strength and low temperature toughness were remarkably deteriorated attributing to the massive grain and some twins in the bainite islands. However, the more when the annealing temperature increased higher than Ac1 but still below Ac3, the more regions can be austenized, which cause the average of carbon content in the austenized regions to be relatively low. So it was difficult that these austenite regions changed into twin martensites after interctitical quenched. Then the comprehensive properties including low temperature toughness became good again.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2242 ◽  
Author(s):  
Chunquan Liu ◽  
Qichun Peng ◽  
Zhengliang Xue ◽  
Shijie Wang ◽  
Chengwei Yang

This study investigated the microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn transformation-induced plasticity (TRIP) steel. The experimental steel, processed by quenching and tempering (Q & T) heat treatment, exhibited excellent mechanical properties for hot-rolled and Q & T steels (strength of 1050–1130 MPa and ductility of 16–34%), as well as for cold-rolled and Q & T steels (strength of 878–1373 MPa and ductility of 18–40%). The mechanical properties obtained after isothermal holding at 775 °C for one hour for cold-rolled/Q & T steel were superior to that of hot-rolled/Q & T steel. Excellent mechanical properties were attributed to the large amount of retained austenite, which produced a discontinuous TRIP effect. Additionally, the differences in mechanical properties correlated with the morphology, stability and content of retained austenite. The cold-rolled sample, quenched from 650 °C (CR 650°C) had extensive TRIP effects in the middle and late stages of the deformation, leading to better mechanical properties. The fracture modes of the hot-rolled sample, quenched from 650 °C, and the cold-rolled sample quenched from 650 °C, were ductile fractures, resulting in excellent ductility.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


Sign in / Sign up

Export Citation Format

Share Document