Optimal balancing of slider-crank servomechanism: closed-loop optimal position control approach

Author(s):  
M. Moradi ◽  
M. Naraghi
Author(s):  
Mark Karpenko ◽  
Nariman Sepehri

This paper documents the design of a low-order, fixed-gain, controller that can maintain the positioning performance of an electrohydraulic actuator operating under variable load with a leaking piston seal. A set of linear time-invariant equivalent models of the faulty hydraulic actuator is first established, in the frequency domain, by Fourier transformation of acceptable actuator input-output responses. Then, a robust position control law is synthesized by quantitative feedback theory to meet the prescribed design tolerances on closed-loop stability and reference tracking. The designed fault tolerant controller uses only actuator position as feedback, yet it can accommodate nonlinearities in the hydraulic functions, maintain robustness against typical parametric uncertainties, and maintain the closed-loop performance despite a leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. To demonstrate the utility of the fault tolerant control approach in a realistic application, the experimental fault tolerant hydraulic system is operated as a flight surface actuator in the hardware-in-the-loop simulation of a high-performance jet aircraft.


1997 ◽  
Vol 30 (21) ◽  
pp. 265-270
Author(s):  
V. Kneppová ◽  
Š. Kozák

2020 ◽  
Vol 9 (2) ◽  
pp. 155-168
Author(s):  
Ziwang Lu ◽  
◽  
Guangyu Tian ◽  

Torque interruption and shift jerk are the two main issues that occur during the gear-shifting process of electric-driven mechanical transmission. Herein, a time-optimal coordination control strategy between the the drive motor and the shift motor is proposed to eliminate the impacts between the sleeve and the gear ring. To determine the optimal control law, first, a gear-shifting dynamic model is constructed to capture the drive motor and shift motor dynamics. Next, the time-optimal dual synchronization control for the drive motor and the time-optimal position control for the shift motor are designed. Moreover, a switched control for the shift motor between a bang-off-bang control and a receding horizon control (RHC) law is derived to match the time-optimal dual synchronization control strategy of the drive motor. Finally, two case studies are conducted to validate the bang-off-bang control and RHC. In addition, the method to obtain the appropriate parameters of the drive motor and shift motor is analyzed according to the coordination control method.


2014 ◽  
Vol 596 ◽  
pp. 620-624
Author(s):  
Yan Bo Hui ◽  
Yong Gang Wang ◽  
Li Wang ◽  
Qun Feng Niu

According to auto-incasing equipment characteristic and control demand, a kind of salt in-bags incasing control management system was designed. The paper introduced the key technologies realization of the system. In the paper, a new fuzzy controller was designed to build a dual closed-loop fuzzy control system, realizing incasing goal site error on-line continuous correction. A logistics management module based on e-Tag was designed to realize product information traceable management. The experimental results show the system realizes accurate position control and RFID logistics management with high reliability and high control precision. The system can be popularized to other products packaging industry.


Author(s):  
Vincent Aloi ◽  
Caroline Black ◽  
Caleb Rucker

Parallel continuum robots can provide compact, compliant manipulation of tools in robotic surgery and larger-scale human robot interaction. In this paper we address stiffness control of parallel continuum robots using a general nonlinear kinetostatic modeling framework based on Cosserat rods. We use a model formulation that estimates the applied end-effector force and pose using actuator force measurements. An integral control approach then modifies the commanded target position based on the desired stiffness behavior and the estimated force and position. We then use low-level position control of the actuators to achieve the modified target position. Experimental results show that after calibration of a single model parameter, the proposed approach achieves accurate stiffness control in various directions and poses.


2021 ◽  
Vol 20 ◽  
pp. 272-280
Author(s):  
Antonis Vouzikas ◽  
Alexandros Gazis

This article studies the problem of designing robust control laws to achieve multiple performance objectives for linear uncertain systems. Specifically, in this study we have selected one of the control objectives to be a closed-loop pole placement in specific regions of the left-half complex plane. As such, a guaranteed cost based multi-objective control approach is proposed and compared with the H_2/H_∞control by means of an application example


Sign in / Sign up

Export Citation Format

Share Document