Tribological properties of bronze filled PTFE under dry sliding conditions and aqueous environments (distilled water and sea water)

Author(s):  
Mohammad Jebran Khan ◽  
Rajat Gupta ◽  
M.F. Wani
2007 ◽  
Vol 330-332 ◽  
pp. 1215-1218 ◽  
Author(s):  
Jian Kong ◽  
Dang Sheng Xiong ◽  
Jian Liang Li ◽  
Qun Xing Yuan

Metallic biomaterials are used as bone plate, dental implant, wire, electrode, and so on. For the purpose of providing the medical services with higher quality, the frictional and wear behavior of Cu47Ti34Zr11Ni8, (Cu47Ti34Zr11Ni8)99Si, Zr41Ti14Cu12.5Ni10Be22.5 and Zr57Nb5Cu15.4Ni12.6Al10 bulk metallic glasses (BMG) against ceramic ( Si3N4) at room temperature under dry sliding and lubrication of fresh plasma, distilled water, and physiological saline conditions were investigated on a pin-on-disc testing machine. Under identical sliding condition, the steady state friction coefficients of BMGs were observed with values ranging from 0.6 to 0.9 under dry sliding, 0.5 to 0.8 under lubrication with distilled water, 0.5 to 0.7 under lubrication with physiological saline, and 0.3 to 0.7 under lubrication with fresh plasma, respectively. Wear rates of BMGs indicated significant difference that the Cu-based metallic glasses exhibited higher wear resistance than that of Zr-based glasses. The surface tracks indicated the existence of viscous flow and the material transfer occurred from BMG rod to the ceramic disc. Since tribological properties are not intrinsic properties, those results demonstrated the influences of the environment and the characteristics of BMGs on the frictional behaviors, and furthermore indicated that BMGs may be one of the promising biomaterials in the future.


2019 ◽  
Vol 26 (10) ◽  
pp. 2623-2633 ◽  
Author(s):  
Yan Wang ◽  
Lei Zhang ◽  
Hong-fei Zhai ◽  
Hong-xia Gao ◽  
Ke-chao Zhou

2012 ◽  
Vol 55 ◽  
pp. 126-134 ◽  
Author(s):  
Gongjun Cui ◽  
Qinling Bi ◽  
Shengyu Zhu ◽  
Jun Yang ◽  
Weimin Liu

1992 ◽  
Vol 25 (11) ◽  
pp. 117-124 ◽  
Author(s):  
N. Watanabe ◽  
S. Sakai ◽  
H. Takatsuki

Examination of individual degradation paths (biodegradation and photolysis) of butyltin compounds (especially tributyltin: TBT) in natural waters was performed. Biodegradation of TBT and dibutyltin (DBT) in an unfiltered sea water in summer is rather fast; their half life is about a week. But pretreatment with glass fiber filter makes the half life of TBT much longer (about 80 days). Photolysis of TBT in sea water by sun light is rapid (half life is about 0.5 days), and faster than in distilled water or in fresh water. Degradation rates of each process for TBT are calculated in various conditions of sea water, and contribution rates are compared. Biodegradation will be the main degradation process in an “SS-rich” area such as a marina, but photolysis will exceed that in a “clean” area. Over all half lives of TBT in sea water vary from 6 days to 127 days considering seasons and presence of SS.


2012 ◽  
Vol 565 ◽  
pp. 615-620
Author(s):  
Bin Shen ◽  
Liang Wang ◽  
Su Lin Chen ◽  
Fang Hong Sun

The CVD diamond/diamond-like carbon composite film is fabricated on the WC-Co substrate by depositing a layer of Diamond-like Carbon film on the surface of conventional Micro- or Nano-crystalline diamond film. The hot filament chemical vapor deposition (HFCVD) method and vacuum arc discharge with a graphite cathode are adopted respectively to deposit the MCD/NCD and DLC films. A variety of characterization techniques, including filed emission scanning electron microscope (FE-SEM) and Raman spectroscopy are employed to investigate the surface morphology and atomic bonding state of as-deposited MCD/DLC and NCD/DLC composite film. The results show that both MCD/DLC and NCD/DLC composite films present similar surface morphology with the MCD and NCD films, except for scattering a considerable amount of small-sized diamond crystallites among the grain boundary area. The atomic-bonding state of as-deposited MCD/DLC and NCD/DLC composite films is determined by the top-layered DLC film, which is mainly consisted of amorphous carbon phase and no discernible sp3 characteristic peak can be observed from their Raman spectrum. Furthermore, the tribological properties of as-deposited MCD/DLC and NCD/DLC composite films is examined using a ball-on-plate reciprocating friction tester under both dry sliding and water-lubricating conditions, comparing with conventional DLC, MCD and NCD films. Silicon nitride balls are used as counterpart materials. For the CVD diamond/DLC composite films, the self-lubricating effect of top-layered DLC film is beneficial for suppressing the initial friction peak, as well as shortening the run-in period. The average friction coefficients of MCD/DLC and NCD/DLC composite films during stable sliding period are 0.07 and 0.10 respectively in dry sliding; while under water-lubricating condition, they further decreases to 0.03 and 0.07.


2017 ◽  
Vol 130 (1) ◽  
pp. 479-484 ◽  
Author(s):  
M. M. Mato ◽  
L. M. Casás ◽  
J. L. Legido ◽  
C. Gómez ◽  
L. Mourelle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document