scholarly journals Design and finite element simulations of aluminium foam-filled thin-walled tubes

2005 ◽  
Vol 37 (2/3) ◽  
pp. 126 ◽  
Author(s):  
A.G. Hanssen ◽  
A. Reyes ◽  
O.S. Hopperstad ◽  
M. Langseth
Author(s):  
Gongyu Liu ◽  
Jiaqiang Dang ◽  
Chao Li ◽  
Ming Chen

Side milling thin-walled workpiece edges is an indispensible procedure in the continuous process chains for the high-efficiency machining of thin-walled functional parts, for example, the small- and medium-sized compressor blades. In these operation cases, the workpiece vibration is easy to occur due to the poor stiffness of the thin-walled structures, causing defects to the machined surface finish and even the dimensional accuracy of the thin-walled workpiece edges. To this problem, this study proposes the tool inclination method based on the adaption of the cutting force component in the lowest stiffness direction of the thin-walled workpiece, and it aims, first, to guarantee the machined surface finish which is mostly dominated by the workpiece vibrations mainly induced by the relatively high cutting forces and, second, to guarantee the high machining efficiency. The parametric study on the tool inclination angle for side milling the thin-walled workpiece edges was conducted by using the finite element simulations. First, the finite element models were elaborated and validated by the experimental results in terms of the cutting forces. Then, based on a series of finite element simulations, the effects of the tool inclination angle on the cutting forces adaption and its corresponding mechanism, that is, the chip formation variation, were investigated. Simulation results under the given conditions showed that the optimal tool inclination angle for the minimum absolute value of Fn was 26°. At last, the prediction feasibility for the best machined surface finish when side milling the low-stiffness thin-walled workpiece edges at the optimal tool inclination angle was well validated by the experimental results. The proposed tool inclination method with the solid end mill based on the finite element model to improve the machined surface finish is meaningful and feasible for the high-efficiency manufacturing processes of thin-walled workpieces.


2014 ◽  
Vol 620 ◽  
pp. 413-416 ◽  
Author(s):  
Yang An ◽  
Chun Hui Yang ◽  
Peter Hodgson

In the study, the strengthening effect of aluminium foam in thin-walled aluminium tubes subject to bending load in investigated experimentally and numerically. Bending tests are conducted on foam filler, hollow tube and foam-filled tube. The finite element method is used as well to get deeper insight into the crush failure modes via focusing on the influence from wall thickness of the tube. The obtained information is useful to optimally design foam-filled tubes as energy absorbing devices in automotive engineering. The optimisation results can be implemented to find an optimum foam-filled tube that absorbs the same energy as the optimal hollow tube but with much less weight.


2011 ◽  
Vol 213 ◽  
pp. 88-92 ◽  
Author(s):  
Qing Chun Wang ◽  
Hao Long Niu ◽  
Guo Quan Wang ◽  
Yu Xin Wang

Different aluminum foam filling lengths were used to increase the bending energy absorbing capacity of the popularly used hat sections. Bending energy-absorption performance of the thin-walled tubes was numerically studied by explicit non-linear software LS-Dyna. First empty hat section subjected to quasi-static bending crushing was simulated, then structures with different aluminium foam filling lengths were calculated, finally energy absorption capacity of these structures were compared. Calculation results showed that, the internal energy absorbed and mass specific energy absorption capacity of foam filled thin walled structures were increased significantly compared to the empty sections. The reason of the improvement was mainly due to the contact of the aluminium foam and the structure. Aluminium foam filling is a promising method for improving lateral energy absorbing capacity of thin-walled sections.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2021 ◽  
Vol 233 ◽  
pp. 111867
Author(s):  
Xiayuan Li ◽  
Shui Wan ◽  
Yuanhai Zhang ◽  
Maoding Zhou ◽  
Yilung Mo

Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document