Chemical Events Leading to Chemiluminescence of Lucigenine and Luminol

1967 ◽  
pp. 23-34
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaakov Weiss ◽  
Yael Kiro ◽  
Cornelia Class ◽  
Gisela Winckler ◽  
Jeff W. Harris ◽  
...  

AbstractChemical events involving deep carbon- and water-rich fluids impact the continental lithosphere over its history. Diamonds are a by-product of such episodic fluid infiltrations, and entrapment of these fluids as microinclusions in lithospheric diamonds provide unique opportunities to investigate their nature. However, until now, direct constraints on the timing of such events have not been available. Here we report three alteration events in the southwest Kaapvaal lithosphere using U-Th-He geochronology of fluid-bearing diamonds, and constrain the upper limit of He diffusivity (to D ≈ 1.8 × 10−19 cm2 s−1), thus providing a means to directly place both upper and lower age limits on these alteration episodes. The youngest, during the Cretaceous, involved highly saline fluids, indicating a relationship with late-Mesozoic kimberlite eruptions. Remnants of two preceding events, by a Paleozoic silicic fluid and a Proterozoic carbonatitic fluid, are also encapsulated in Kaapvaal diamonds and are likely coeval with major surface tectonic events (e.g. the Damara and Namaqua–Natal orogenies).


2000 ◽  
Vol 355 (1396) ◽  
pp. 441-447 ◽  
Author(s):  
T. Yanagida ◽  
S. Esaki ◽  
A. Hikikoshi Iwane ◽  
Y. Inoue ◽  
A. Ishijima ◽  
...  

Recent progress in single–molecule detection techniques is remarkable. These techniques have allowed the accurate determination of myosin–head–induced displacements and how mechanical cycles are coupled to ATP hydrolysis, by measuring individual mechanical events and chemical events of actomyosin directly at the single–molecule level. Here we review our recent work in which we have made detailed measurements of myosin step size and mechanochemical coupling, and propose a model of the myosin motor.


1998 ◽  
Vol 9 (2) ◽  
pp. 128-161 ◽  
Author(s):  
C.E. Smith

This review focuses on the process of enamel maturation, a series of events associated with slow, progressive growth in the width and thickness of apatitic crystals. This developmental step causes gradual physical hardening and transformation of soft, newly formed enamel into one of the most durable mineralized tissues produced biologically. Enamel is the secretory product of specialized epithelial cells, the ameloblasts, which make this covering on the crowns of teeth in two steps. First, they roughly "map out" the location and limits (overall thickness) of the entire extracellular layer as a protein-rich, acellular, and avascular matrix filled with thin, ribbon-like crystals of carbonated hydroxyapatite. These initial crystals are organized spatially into rod and interrod territories as they form, and rod crystals are lengthened by Tomes' processes in tandem with appositional movement of ameloblasts away from the dentin surface. Once the full thickness of enamel has been formed, ameloblasts initiate a series of repetitive morphological changes at the enamel surface in which tight junctions and deep membrane infoldings periodically appear (ruffle-ended), then disappear for short intervals (smooth-ended), from the apical ends of the cells. As this happens, the enamel covered by these cells changes rhythmically in net pH from mildly acidic (ruffle-ended) to near-physiologic (smooth-ended) as mineral crystals slowly expand into the "spaces" (volume) formerly occupied by matrix proteins and water. Matrix proteins are processed and degraded by proteinases throughout amelogenesis, but they undergo more rapid destruction once ameloblast modulation begins. Ruffle-ended ameloblasts appear to function primarily as a regulatory and transport epithelium for controlling the movement of calcium and other ions such as bicarbonate into enamel to maintain buffering capacity and driving forces optimized for surface crystal growth. The reason ruffle-ended ameloblasts become smooth-ended periodically is unknown, although this event seems to be crucial for sustaining long-term crystal growth.


1956 ◽  
Vol 36 (4) ◽  
pp. 503-538 ◽  
Author(s):  
Fritz Buchthal ◽  
Ole Svensmark ◽  
Poul Rosenfalck

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2764
Author(s):  
Ya Liu ◽  
Joanna Aizenberg ◽  
Anna C. Balazs

Computational models that reveal the structural response of polymer gels to changing, dissolved reactive chemical species would provide useful information about dynamically evolving environments. However, it remains challenging to devise one computational approach that can capture all the interconnected chemical events and responsive structural changes involved in this multi-stage, multi-component process. Here, we augment the dissipative particle dynamics (DPD) method to simulate the reaction of a gel with diffusing, dissolved chemicals to form kinetically stable complexes, which in turn cause concentration-dependent deformation of the gel. Using this model, we also examine how the addition of new chemical stimuli and subsequent reactions cause the gel to exhibit additional concentration-dependent structural changes. Through these DPD simulations, we show that the gel forms multiple latent states (not just the “on/off”) that indicate changes in the chemical composition of the fluidic environment. Hence, the gel can actuate a range of motion within the system, not just movements corresponding to the equilibrated swollen or collapsed states. Moreover, the system can be used as a sensor, since the structure of the layer effectively indicates the presence of chemical stimuli.


2019 ◽  
Vol 10 (7) ◽  
pp. 2159-2170 ◽  
Author(s):  
Marta Castiñeira Reis ◽  
Carlos Silva López ◽  
Olalla Nieto Faza ◽  
Dean J. Tantillo

Coupling multiple 1,n-shifts in reactions of biosynthetically relevant carbocations defies previous limits on the concertedness of multiple chemical events.


Sign in / Sign up

Export Citation Format

Share Document