Computer Graphic Modeling in Drug Design: Conformational Analysis and Active-Site Modeling of Lipophilic Diaminopyrimidines

1986 ◽  
pp. 851-854
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1004
Author(s):  
Mahmoud A. El Hassab ◽  
Mohamed Fares ◽  
Mohammed K. Abdel-Hamid Amin ◽  
Sara T. Al-Rashood ◽  
Amal Alharbi ◽  
...  

Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.


1988 ◽  
Vol 66 (11) ◽  
pp. 2733-2750 ◽  
Author(s):  
Saul Wolfe ◽  
Kiyull Yang ◽  
Maged Khalil

Using the MMPEN parameters of Allinger's MMP2(85) force field, a conformational analysis has been performed on four biologically active penicillins; D-ampicillin, L-α-phenoxyethylpenicillin, penicillin G, and penicillin V, and on five biologically inactive or much less active penicillins: L-ampicillin, D-α-phenoxyethylpenicillin, N-methylpenicillin G, 6α-methylpenicillin G, and bisnorpenicillin G. Antibacterial activity is found to be associated with the existence of a global minimum having a compact structure, whose convex face is accessible to a penicillin binding protein (PBP), with the C3-carboxyl group and the side-chain N-H exposed on this face. Using the MMPEP parameters of MMP2(85), a conformational analysis has been performed on phenylacetyl-D-Ala-D-Ala-O−, a peptide model of the normal substrate of a PBP. Labischinski's global minimum has been reproduced, along with structures that correspond to Tipper and Strominger's proposal that the N4—C7 bond of a penicillin corresponds to the Ala–Ala peptide bond, and to Hasan's proposal that the N4—C5 bond of penicillin corresponds to the peptide bond. For both models, conformations of the peptide related to the pseudoaxial and pseudoequatorial conformations of the thiazolidine ring of penicillin G have been examined. It is concluded that penicillin is not a structural analog of the global minimum of the peptide; however, comparisons based on unbound conformations of PBP substrates are unable to determine which model is more appropriate, or which conformation of penicillin G is the biologically significant one. Using the ECEPP/MMPEP strategy, a model of the active site of a PBP has been obtained, following a search of 200,000 structures of the peptide Ac-NH-Val-Gly-Ser-Val-Thr-Lys-NH-Me. This peptide contains the sequence at the active site of a PBP of Streptomyces R61, for which it is also known that the C3-carboxyl group of penicillin binds to the ε-amino group of lysine, and the β-lactam reacts chemically with the serine OH. The lysine and serine side chains and the C-terminal carbonyl group are found to occupy the concave face of the active site model.A strategy for the docking of penicillins or peptides to this model, with full minimization of the conformational energies of the complexes, has been devised. All active penicillins bind through strong hydrogen bonds to the C3-carboxyl group and the side-chain N-H, and with a four-centered relationship between the O-H of serine and the (O)C-N of the β-lactam ring. The geometrical parameters of this relationship are reminiscent of those found in the gas phase transition state of neutral hydration of a carbonyl group. When the energies of formation and geometries of the pseudoaxial and pseudoequatorial penicillin G complexes are examined, there is now a clear preference for the binding of the pseudoaxial conformation, which is the global minimum of the uncomplexed penicillin in this case. A similar examination of the peptide complexes reveals that only the conformation of the peptide that corresponds to Tipper and Strominger's model, and is based on the pseudoaxial conformation of penicillin G, can form a complex with a geometry and energy comparable to those of a biologically active penicillin.


Author(s):  
P. Romby ◽  
C. Brunel ◽  
E. Westhof ◽  
C. Ehresmann ◽  
B. Ehresmann

2021 ◽  
Vol 14 (10) ◽  
pp. 1062
Author(s):  
Tomasz Róg ◽  
Mykhailo Girych ◽  
Alex Bunker

We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard “lock and key” paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.


2018 ◽  
Vol 16 (1) ◽  
pp. 8-21
Author(s):  
MANYIM SCOLASTICA ◽  
ALBERT J. NDAKALA ◽  
SOLOMON DERESE

Scolastica M, Ndakala AJ, Derese S. 2018. Modeling and synthesis of antiplasmodial chromones, chromanones and chalcones based on natural products of Kenya. Biofarmasi J Nat Prod Biochem 16: 8-21. Despite numerous research that has been done on plants of Kenya resulting in the isolation of thousands of natural products, data on these natural products are not systematically organized in a readily accessible form. This has urged the construction of a web-based database of natural products of Kenya. The database is named Mitishamba and is hosted at http://mitishamba.uonbi.ac.ke. The Mitishamba database was queried for chromones, chromanones, and chalcones that were subjected to structure-based drug design using Fred (OpenEye) docking utility program with 1TV5 PDB structure of the PfDHODH receptor to identify complex of ligands that bind with the active site. Ligand-based drug design (Shape and electrostatics comparison) was also done on the ligands against query A77 1726 (38) (the ligand that co-crystallized with PfDHODH receptor) using ROCS and EON programs, respectively, of OpenEye suite. There was a substantial similarity among the top performing ligands in the docking studies with shape and electrostatic comparison that led to the identification of compounds of interest which were targeted for synthesis and antiplasmodial assay. In this study, a chromanone (7-hydroxy-2-(4-methoxyphenyl) chroman-4-one (48)) and two intermediate chalcones (2',4'-dihydroxy-4-methoxychalcone (45) and 2’,4’-dihydroxy-4-chlorochalcone (47)), were synthesized and subjected to antiplasmodial assay. Among these substances, 45 showed vigorous activity, whereas 47 and 48 had moderate activity against the chloroquine resistant K1 strain of P. falciparum with IC50 values of 4.56±1.66, 17.62 ± 5.94 and 18.01 ±1.66 µg/ml, respectively. Since the synthesized compounds showed antiplasmodial potential, there is a need for further computational refinement of these compounds to optimize their antiplasmodial activity.


2007 ◽  
Vol 63 (8) ◽  
pp. 923-925 ◽  
Author(s):  
Guillaume Poncet-Montange ◽  
Stephanie Ducasse-Cabanot ◽  
Annaick Quemard ◽  
Gilles Labesse ◽  
Martin Cohen-Gonsaud

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Changyao Li ◽  
Yan Chai ◽  
Hao Song ◽  
Changjiang Weng ◽  
Jianxun Qi ◽  
...  

ABSTRACT E165R, a highly specific dUTP nucleotidohydrolase (dUTPase) encoded by the African swine fever virus (ASFV) genome, is required for productive replication of ASFV in swine macrophages. Here, we solved the high-resolution crystal structures of E165R in its apo state and in complex with its product dUMP. Structural analysis explicitly defined the architecture of the active site of the enzyme as well as the interaction between the active site and the dUMP ligand. By comparing the ASFV E165R structure with dUTPase structures from other species, we found that the active site of E165R is highly similar to those of dUTPases from Mycobacterium tuberculosis and Plasmodium falciparum, against which small-molecule chemicals have been developed, which could be the potential drug or lead compound candidates for ASFV. Our results provide important basis for anti-ASFV drug design by targeting E165R. IMPORTANCE African swine fever virus (ASFV), an Asfivirus affecting pigs and wild boars with up to 100% case fatality rate, is currently rampaging throughout China and some other countries in Asia. There is an urgent need to develop therapeutic and preventive reagents against the virus. Our crystallographic and biochemical studies reveal that ASFV E165R is a member of trimeric dUTP nucleotidohydrolase (dUTPase) family that catalyzes the hydrolysis of dUTP into dUMP. Our apo-E165R and E165R-dUMP structures reveal the constitutive residues and the configuration of the active center of this enzyme in rich detail and give evidence that the active center of E165R is very similar to that of dUTPases from Plasmodium falciparum and Mycobacterium tuberculosis, which have already been used as targets for designing drugs. Therefore, our high-resolution structures of E165R provide useful structural information for chemotherapeutic drug design.


Sign in / Sign up

Export Citation Format

Share Document