THE SAMPLING VARIABILITY OF THE AUTOREGRESSIVE SPECTRAL ESTIMATES FOR TWO-VARIATE HYDROMETEOROLOGICAL PROCESSES

2021 ◽  
Vol 11 (15) ◽  
pp. 6782
Author(s):  
Borko Đ. Bulajić ◽  
Marijana Hadzima-Nyarko ◽  
Gordana Pavić

The severity of vertical seismic ground motions is often factored into design regulations as a component of their horizontal counterparts. Furthermore, most design codes, including Eurocode 8, ignore the impact of local soil on vertical spectra. This paper investigates vertical pseudo-absolute acceleration spectral estimates, as well as the ratios of spectral estimates for strong motion in vertical and horizontal directions, for low to medium seismicity regions with deep local soil and deep geological sediments beneath the local soil. The case study region encompasses the city of Osijek in Croatia. New regional frequency-dependent empirical scaling equations are derived for the vertical spectra. According to these equations, for a 0.3 s spectral amplitude at deep soils atop deep geological sediments compared to the rock sites, the maximum amplification is 1.48 times. The spectra of vertical components of various real strong motions recorded in the surrounding region are compared to the empirical vertical response spectra. The new empirical equations are used to construct a Uniform Hazard Spectra for Osijek. The ratios of vertical to horizontal Uniform Hazard Spectra are generated, examined, and compared to Eurocode 8 recommendations. All the results show that local soil and deep geology conditions have a significant impact on vertical ground motions. The results also show that for deep soils atop deep geological strata, Eurocode 8 can underestimate the vertical to horizontal spectral ratios by a factor of three for Type 2 spectra while overestimating them by a factor of two for Type 1 spectra.


1992 ◽  
Vol 114 (1) ◽  
pp. 45-51 ◽  
Author(s):  
G. J. Brereton ◽  
A. Kodal

A new technique is presented for decomposing unsteady turbulent flow variables into their organized unsteady and turbulent components, which appears to offer some significant advantages over existing ones. The technique uses power-spectral estimates of data to deduce the optimal frequency-domain filter for determining the organized and turbulent components of a time series of data. When contrasted with the phase-averaging technique, this method can be thought of as replacing the assumption that the organized motion is identically reproduced in successive cycles of known periodicity by a more general condition: the cross-correlation of the organized and turbulent components is minimized for a time series of measurement data, given the expected shape of the turbulence power spectrum. The method is significantly more general than the phase average in its applicability and makes more efficient use of available data. Performance evaluations for time series of unsteady turbulent velocity measurements attest to the accuracy of the technique and illustrate the improved performance of this method over the phase-averaging technique when cycle-to-cycle variations in organized motion are present.


1985 ◽  
Vol 51 (4) ◽  
pp. 239-247 ◽  
Author(s):  
P. J. Franaszczuk ◽  
K. J. Blinowska ◽  
M. Kowalczyk

The Lancet ◽  
1986 ◽  
Vol 327 (8480) ◽  
pp. 523-525 ◽  
Author(s):  
B. Maharaj ◽  
W.P. Leary ◽  
A.D. Naran ◽  
R.J. Maharaj ◽  
R.M. Cooppan ◽  
...  

1990 ◽  
Vol 47 (1) ◽  
pp. 2-15 ◽  
Author(s):  
Randall M. Peterman

Ninety-eight percent of recently surveyed papers in fisheries and aquatic sciences that did not reject some null hypothesis (H0) failed to report β, the probability of making a type II error (not rejecting H0 when it should have been), or statistical power (1 – β). However, 52% of those papers drew conclusions as if H0 were true. A false H0 could have been missed because of a low-power experiment, caused by small sample size or large sampling variability. Costs of type II errors can be large (for example, for cases that fail to detect harmful effects of some industrial effluent or a significant effect of fishing on stock depletion). Past statistical power analyses show that abundance estimation techniques usually have high β and that only large effects are detectable. I review relationships among β, power, detectable effect size, sample size, and sampling variability. I show how statistical power analysis can help interpret past results and improve designs of future experiments, impact assessments, and management regulations. I make recommendations for researchers and decision makers, including routine application of power analysis, more cautious management, and reversal of the burden of proof to put it on industry, not management agencies.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
M. B. Johari ◽  
G. Najafian

For an offshore structure, wind, wave, current, tide, ice and gravitational forces are all important sources of loading which exhibit a high degree of statistical uncertainty. The capability to predict the probability distribution of the response extreme values during the service life of the structure is essential for safe and economical design of these structures. Many different techniques have been introduced for evaluation of statistical properties of response. In each case, sea-states are characterised by an appropriate water surface elevation spectrum, covering a wide range of frequencies. In reality, the most versatile and reliable technique for predicting the statistical properties of the response of an offshore structure to random wave loading is the time domain simulation technique. To this end, conventional time simulation (CTS) procedure or commonly called Monte Carlo time simulation method is the best known technique for predicting the short-term and long-term statistical properties of the response of an offshore structure to random wave loading due to its capability of accounting for various nonlinearities. However, this technique requires very long simulations in order to reduce the sampling variability to acceptable levels. In this paper, the effect of sampling variability of a Monte Carlo technique is investigated.


Sign in / Sign up

Export Citation Format

Share Document