scholarly journals Migratory state is not associated with differences in neural glucocorticoid or mineralocorticoid receptor expression in pine siskins

2019 ◽  
Vol 6 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Heather E. Watts ◽  
Jeffrey L. Rittenhouse ◽  
Kendra B. Sewall ◽  
J. Michael Bowers

Abstract Although the endocrine system likely plays an important role in orchestrating the transition to a migratory state, the specific mechanisms by which this occurs remain poorly understood. Changes in glucocorticoid signaling are one proposed mechanism that may be important in migratory transitions. Although previous work has focused on the role of changes in circulating glucocorticoids, another potential mechanism is changes in the expression of its cognate receptors. Here, we test this hypothesis by comparing mRNA expression of the genes for the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in two brain regions implicated in the regulation of migratory behavior (the hippocampus and hypothalamus) in pine siskins (Spinus pinus) sampled before or after the transition to a spring nomadic migratory state. Compared to pre-migratory birds, migratory birds had body conditions more indicative of physiological preparations for migration (e.g., larger body mass), and greater levels of nocturnal migratory restlessness. However, we found no differences between pre-migratory and migratory birds in the expression of GR or MR mRNA in either the hippocampus or hypothalamus. Thus, differences in expression of receptors for glucocorticoids do not appear to underly the observed differences in physiology and behavior across a migratory transition. Taken together with previous results showing no change in circulating corticosterone levels during this transition, our findings provide no evidence for a role of glucocorticoid signaling in the spring migratory transition of this species.

Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2020 ◽  
Author(s):  
Sara Ruth Westbrook ◽  
Lauren Carrica ◽  
Asia Banks ◽  
Joshua Michael Gulley

Adolescent use of amphetamine and its closely related, methylated version methamphetamine, is alarmingly high in those who use drugs for nonmedical purposes. This raises serious concerns about the potential for this drug use to have a long-lasting, detrimental impact on the normal development of the brain and behavior that is ongoing during adolescence. In this review, we explore recent findings from both human and laboratory animal studies that investigate the consequences of amphetamine and methamphetamine exposure during this stage of life. We highlight studies that assess sex differences in adolescence, as well as those that are designed specifically to address the potential unique effects of adolescent exposure by including groups at other life stages (typically young adulthood). We consider epidemiological studies on age and sex as vulnerability factors for developing problems with the use of amphetamines, as well as human and animal laboratory studies that tap into age differences in use, its short-term effects on behavior, and the long-lasting consequences of this exposure on cognition. We also focus on studies of drug effects in the prefrontal cortex, which is known to be critically important for cognition and is among the later maturing brain regions. Finally, we discuss important issues that should be addressed in future studies so that the field can further our understanding of the mechanisms underlying adolescent use of amphetamines and its outcomes on the developing brain and behavior.


Epigenomics ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 1583-1599 ◽  
Author(s):  
Claudia Knothe ◽  
Bruno G Oertel ◽  
Alfred Ultsch ◽  
Mattias Kettner ◽  
Peter Harald Schmidt ◽  
...  

2017 ◽  
Vol 24 (5) ◽  
pp. 501-515 ◽  
Author(s):  
T. Schmidt-Wilcke ◽  
E. Fuchs ◽  
K. Funke ◽  
A. Vlachos ◽  
F. Müller-Dahlhaus ◽  
...  

Neural functioning and plasticity can be studied on different levels of organization and complexity ranging from the molecular and synaptic level to neural circuitry of whole brain networks. Across neuroscience different methods are being applied to better understand the role of various neurotransmitter systems in the evolution of perception and cognition. GABA is the main inhibitory neurotransmitter in the adult mammalian brain and, depending on the brain region, up to 25% of the total number of cortical neurons are GABAergic interneurons. At the one end of the spectrum, GABAergic neurons have been accurately described with regard to cell morphological, molecular, and electrophysiological properties; at the other end researchers try to link GABA concentrations in specific brain regions to human behavior using magnetic resonance spectroscopy. One of the main challenges of modern neuroscience currently is to integrate knowledge from highly specialized subfields at distinct biological scales into a coherent picture that bridges the gap between molecules and behavior. In the current review, recent findings from different fields of GABA research are summarized delineating a potential strategy to develop a more holistic picture of the function and role of GABA.


2009 ◽  
Vol 49 (5) ◽  
pp. 519-537 ◽  
Author(s):  
Wilbur P. Williams ◽  
Erin M. Gibson ◽  
Connie Wang ◽  
Stephanie Tjho ◽  
Neera Khattar ◽  
...  

Abstract Circadian rhythms impact a variety of behavioral and physiological functions contributing to longevity and successful reproduction. In their natural environments, individuals of a species are faced with a multitude of challenges and the coordination of internal processes and behavior with external pressures has been hypothesized to be an important target of natural selection. Several lines of evidence from cyanobacteria, Drosophila, and plants provide strong support for an important role of the circadian clock in survival and reproductive success. Similarly in mammals, disruptions in circadian function markedly impact reproduction and lifespan. The present review discusses research outlining the proximate and ultimate mechanisms responsible for the central and peripheral control of the reproductive axis. Because precise temporal coordination of the endocrine system is particularly crucial for reproduction by females, the present overview focuses on the role of circadian timing in this sex.


2014 ◽  
Vol 35 (2) ◽  
pp. 111-118
Author(s):  
Daniel J. Howard ◽  
Roger A. Kerin

The name similarity effect is the tendency to like people, places, and things with names similar to our own. Although many researchers have examined name similarity effects on preferences and behavior, no research to date has examined whether individual differences exist in susceptibility to those effects. This research reports the results of two experiments that examine the role of self-monitoring in moderating name similarity effects. In the first experiment, name similarity effects on brand attitude and purchase intentions were found to be stronger for respondents high, rather than low, in self-monitoring. In the second experiment, the interactive effect observed in the first study was found to be especially true in a public (vs. private) usage context. These findings are consistent with theoretical expectations of name similarity effects as an expression of egotism manifested in the image and impression management concerns of high self-monitors.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Sign in / Sign up

Export Citation Format

Share Document