Role of the 807 C/T Polymorphism of the α2 Gene in Platelet GP Ia Collagen Receptor Expression and Function

1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.

2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


Author(s):  
Myriam Fabre ◽  
Merc� Martin, ◽  
Fausto Ulloa ◽  
Francisco X. Real

2015 ◽  
Vol 78 (13-14) ◽  
pp. 814-824 ◽  
Author(s):  
María Verónica Prego-Faraldo ◽  
Vanessa Valdiglesias ◽  
Blanca Laffon ◽  
José M. Eirín-López ◽  
Josefina Méndez

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Linh Le ◽  
Lingzi Niu ◽  
Matthew J. Barter ◽  
David A. Young ◽  
Tamas Dalmay ◽  
...  

AbstractMicroRNAs have been shown to play a role in cartilage development, homeostasis and breakdown during osteoarthritis. We previously identified miR-3085 in humans as a chondrocyte-selective microRNA, however it could not be detected by Northern blot. The aim of the current study was to prove that miR-3085 is a microRNA and to investigate the function of miR-3085 in signaling pathways relevant to cartilage homeostasis and osteoarthritis. Here, we confirm that miR-3085 is a microRNA and not another class of small RNA using (1) a pre-miR hairpin maturation assay, (2) expression levels in a Dicer null cell line, and (3) Ago2 pulldown. MicroRNA-3085-3p is expressed more highly in micromass than monolayer cultured chondrocytes. Transfection of miR-3085-3p into chondrocytes decreases expression of COL2A1 and ACAN, both of which are validated as direct targets of miR-3085-3p. Interleukin-1 induces the expression of miR-3085-3p, at least in part via NFκB. In a feed-forward mechanism, miR-3085-3p then potentiates NFκB signaling. However, at early time points after transfection, its action appears to be inhibitory. MyD88 has been shown to be a direct target of miR-3085-3p and may be responsible for the early inhibition of NFκB signaling. However, at later time points, MyD88 knockdown remains inhibitory and so other functions of miR-3085-3p are clearly dominant. TGFβ1 also induces the expression of miR-3085-3p, but in this instance, it exerts a feedback inhibition on signaling with SMAD3 and SMAD4 shown to be direct targets. This in vitro analysis shows that miR-3085-3p functions in chondrocytes to induce IL-1-signaling, reduce TGFβ1 signaling, and inhibit expression of matrix genes. These data suggest that miR-3085-3p has a role in chondrocyte function and could contribute to the process of osteoarthritis.


Author(s):  
Steffen Pockes ◽  
Katharina Tropmann

Since the discovery of the histamine H2 receptor (H2R), radioligands were among the most powerful tools to investigate its role and function. Initially, radiolabeling was used to investigate human and rodent tissues regarding their receptor expression. Later, radioligands gained increasing significance as pharmacological tools in in vitro assays. Although tritium-labeling was mainly used for this purpose, labeling with carbon-14 is preferred for metabolic studies of drug candidates. After the more-or-less successful application of numerous labeled H2R antagonists, the recent development of the G protein-biased radioligand [3H]UR-KAT479 represents another step forward to elucidate the widely unknown role of the H2R in the central nervous system through future studies.


Development ◽  
1999 ◽  
Vol 126 (12) ◽  
pp. 2703-2713 ◽  
Author(s):  
T. Dheen ◽  
I. Sleptsova-Friedrich ◽  
Y. Xu ◽  
M. Clark ◽  
H. Lehrach ◽  
...  

Several genes containing the conserved T-box region in invertebrates and vertebrates have been reported recently. Here, we describe three novel members of the T-box gene family in zebrafish. One of these genes, tbx-c, is studied in detail. It is expressed in the axial mesoderm, notably, in the notochordal precursor cells immediately before formation of the notochord and in the chordoneural hinge of the tail bud, after the notochord is formed. In addition, its expression is detected in the ventral forebrain, sensory neurons, fin buds and excretory system. The expression pattern of tbx-c differs from that of the other two related genes, tbx-a and tbx-b. The developmental role of tbx-c has been analysed by overexpression of the full-length tbx-c mRNA and a truncated form of tbx-c mRNA, which encodes the dominant-negative Tbx-c. Overexpression of tbx-c causes expansion of the midline mesoderm and formation of ectopic midline structures at the expense of lateral mesodermal cells. In dominant-negative experiments, the midline mesoderm is reduced with the expansion of lateral mesoderm to the midline. These results suggest that tbx-c plays a role in formation of the midline mesoderm, particularly, the notochord. Moreover, modulation of tbx-c activity alters the development of primary motor neurons. Results of in vitro analysis in zebrafish animal caps suggest that tbx-c acts downstream of early mesodermal inducers (activin and ntl) and reveal an autoregulatory feedback loop between ntl and tbx-c. These data and analysis of midline (ntl−/− and flh−/−) and lateral mesoderm (spt−/−) mutants suggest that tbx-c may function during formation of the notochord.


Sign in / Sign up

Export Citation Format

Share Document