scholarly journals The Effect Of Two-Stage Age Hardening Treatment Combined With Shot Peening On Stress Distribution In The Surface Layer Of 7075 Aluminum Alloy

2015 ◽  
Vol 60 (3) ◽  
pp. 1993-1998 ◽  
Author(s):  
Ł. Kaczmarek ◽  
P. Zawadzki ◽  
M. Stegliński ◽  
R. Wójcik ◽  
M. Klich ◽  
...  

Abstract The article present the results of the study on the improvement of mechanical properties of the surface layer of 7075 aluminum alloy via two-stage aging combined with shot peening. The experiments proved that thermo-mechanical treatment may significantly improve hardness and stress distribution in the surface layer. Compressive stresses of 226 MPa±5.5 MPa and hardness of 210±2 HV were obtained for selected samples.

2015 ◽  
Vol 50 (22) ◽  
pp. 7262-7270 ◽  
Author(s):  
Pengfei Ji ◽  
Zhongyu Yang ◽  
Jin Zhang ◽  
Lin Zheng ◽  
Vincent Ji ◽  
...  

2020 ◽  
Vol 27 (4) ◽  
pp. 58-69
Author(s):  
Ghazwan Shihab ◽  
Adel Al-Bash

The aim of this work is to study the effect of the time of shot peening 3mm diameter steel balls on the mechanical properties of (2024 - T3) aluminum alloy butt welds. The welds were joined using Friction stir welding method. Mechanical tests) Tensile strength, hardness, fatigue strength( were performed on welded joints to determine the variation of these properties. The experimental results of SP time, 5 and 10 minutes give an improvement in mechanical properties. It was found that the longer the time of shot peening the mechanical properties are increased to a certain extent than the effect begins whereas when shot peening time at 15 min the mechanical properties decrease due to the concentration of stresses and surface annealing. Results show that the best mechanical properties of the welded zone were obtained at 10 minutes shot time due to the high compressive stresses generated by shot peening.


2018 ◽  
Vol 920 ◽  
pp. 83-88
Author(s):  
Jun Hao Zhang ◽  
Xiu Quan Cheng ◽  
Qin Xiang Xia ◽  
Jia Yu Li

The laser shot peening has the widely application prospect in aircraft structural parts repairment. The influence of laser shot peening parameters on the surface hardness and surface roughness has guiding significance for laser shot peening process. The variation law of surface hardness and surface roughness in the peening area of 7075 aluminum alloy were obtained based on the experiment research. The results show that the surface hardness improves effectively after laser shot peening, and the maximum hardness is 205.4HV, which is improved by 19.49% compared with the original hardness. Besides, the surface roughness of the rough specimen decreases; whereas, those of the smooth specimen increases after laser shot peening. However, both the surface hardness and surface roughness tend to be saturated when the impact times exceeds 3 times or the overlap rate exceeds 50%. Therefore, a good repairment effect can be obtained with 3 impact times and 50% overlap rate for the 7075 aluminum alloy specimen.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1177 ◽  
Author(s):  
Yi-Ling Chang ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui

When hot forging 7075 aluminum alloy, as a military material durable enough for most of its applications, it needs to be heat-treated to ensure the target material property achieves the application requirements. However, the material properties change because of heat throughout usage. In this study, a new approach was devised to heat treat the alloy to prevent material property changes. The study further clarified the effect of rapid heat treatment on the high-temperature resistance of a hot forging 7075 aluminum alloy. Infrared (IR) heat treatment was used as a rapid heating technique to effectively replace the conventional resistance heat (RH) treatment method. Our experimental result showed that IR heat treatment resulted in better age hardening at the initial aging stage, where its tensile strength and elongation appeared like that of a resistance heat treatment. More so, based on hardness and tensile test results, the IR-heated treatment process inhibited the phase transformation of precipitations at a higher temperature, improving high-temperature softening resistance and enhancing the thermal stability of the hot forging 7075 aluminum alloy.


Sign in / Sign up

Export Citation Format

Share Document