scholarly journals Further structural studies of the lytic polysaccharide monooxygenase AoAA13 belonging to the starch-active AA13 family

Amylase ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Sebastian J. Muderspach ◽  
Tobias Tandrup ◽  
Kristian E. H. Frandsen ◽  
Gianluca Santoni ◽  
Jens-Christian N. Poulsen ◽  
...  

Abstract Lytic polysaccharide monooxygenases (LPMOs) are recently discovered copper enzymes that cleave recalcitrant polysaccharides by oxidation. The structure of an Aspergillus oryzae LPMO from the starch degrading family AA13 (AoAA13) has previously been determined from an orthorhombic crystal grown in the presence of copper, which is photoreduced in the structure. Here we describe how crystals reliably grown in presence of Zn can be Cu-loaded post crystallization. A partly photoreduced structure was obtained by severely limiting the X-ray dose, showing that this LPMO is much more prone to photoreduction than others. A serial synchrotron crystallography structure was also obtained, showing that this technique may be promising for further studies, to reduce even further photoreduction. We additionally present a triclinic structure of AoAA13, which has less occluded ligand binding site than the orthorhombic one. The availability of the triclinic crystals prompted new ligand binding studies, which lead us to the conclusion that small starch analogues do not bind to AoAA13 to an appreciable extent. A number of disordered conformations of the metal binding histidine brace have been encountered in this and other studies, and we have previously hypothesized that this disorder may be a consequence of loss of copper. We performed molecular dynamics in the absence of active site metal, and showed that the dynamics in solution differ somewhat from the disorder observed in the crystal, though the extent is equally dramatic.

2021 ◽  
Vol 9 ◽  
Author(s):  
Damao Wang ◽  
Yanping Li ◽  
Yuting Zheng ◽  
Yves S. Y. Hsieh

Lytic polysaccharide monooxygenase (LPMO) is a newly discovered and widely studied enzyme in recent years. These enzymes play a key role in the depolymerization of sugar-based biopolymers (including cellulose, hemicellulose, chitin and starch), and have a positive significance for biomass conversion. LPMO is a copper-dependent enzyme that can oxidize and cleave glycosidic bonds in cellulose and other polysaccharides. Their mechanism of action depends on the correct coordination of copper ions in the active site. There are still difficulties in the analysis of LPMO activity, which often requires multiple methods to be used in concert. In this review, we discussed various LPMO activity analysis methods reported so far, including mature mass spectrometry, chromatography, labeling, and indirect measurements, and summarized the advantages, disadvantages and applicability of different methods.


2019 ◽  
Vol 21 (21) ◽  
pp. 5924-5933 ◽  
Author(s):  
Salla Koskela ◽  
Shennan Wang ◽  
Dingfeng Xu ◽  
Xuan Yang ◽  
Kai Li ◽  
...  

An environmentally friendly, energy-efficient method for cellulose nanofibre (CNF) production from softwood holocellulose utilising oxidative enzymes, lytic polysaccharide monooxygenases (LPMOs).


2021 ◽  
Vol 12 (1) ◽  
pp. 352-362
Author(s):  
Aina McEvoy ◽  
Joel Creutzberg ◽  
Raushan K. Singh ◽  
Morten J. Bjerrum ◽  
Erik D. Hedegård

With QM/MM, we investigate the mechanism of tyrosine deprotonation in lytic polysaccharide monooxygenases. Our results support deprotonation and our calculated UV-vis spectra show that two isomers must be formed to match recent experiments.


2019 ◽  
Vol 10 (2) ◽  
pp. 576-586 ◽  
Author(s):  
Octav Caldararu ◽  
Esko Oksanen ◽  
Ulf Ryde ◽  
Erik D. Hedegård

A mechanism for the formation of hydrogen peroxide by lytic polysaccharide monooxygenases (LPMOs) in the absence of substrate is proposed.


2020 ◽  
Vol 12 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Caio de Oliveira Gorgulho Silva ◽  
Tallyta Santos Teixeira ◽  
Kelly Barreto Rodrigues ◽  
Amanda Araújo Souza ◽  
Antonielle Vieira Monclaro ◽  
...  

Two new mass spectrometry methods, MALDI-TOF MS and hydrophilic interaction UHPLC-ESI-MS, were developed for the characterization of cellulose-active lytic polysaccharide monooxygenases, expanding the analytical toolbox for the study of these enzymes.


2018 ◽  
Vol 46 (6) ◽  
pp. 1431-1447 ◽  
Author(s):  
Tobias Tandrup ◽  
Kristian E. H. Frandsen ◽  
Katja S. Johansen ◽  
Jean-Guy Berrin ◽  
Leila Lo Leggio

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


2014 ◽  
Vol 289 (27) ◽  
pp. 18782-18792 ◽  
Author(s):  
Mikael Gudmundsson ◽  
Seonah Kim ◽  
Miao Wu ◽  
Takuya Ishida ◽  
Majid Hadadd Momeni ◽  
...  

2015 ◽  
Vol 71 (11) ◽  
pp. 1448-1452 ◽  
Author(s):  
John-Paul Bacik ◽  
Sophanit Mekasha ◽  
Zarah Forsberg ◽  
Andrey Kovalevsky ◽  
Jay C. Nix ◽  
...  

Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm3) of a chitin-processing LPMO from the Gram-positive soil bacteriumJonesia denitrificanswere grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space groupP212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. Joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.


2018 ◽  
Vol 294 (5) ◽  
pp. 1516-1528 ◽  
Author(s):  
Silja Kuusk ◽  
Riin Kont ◽  
Piret Kuusk ◽  
Agnes Heering ◽  
Morten Sørlie ◽  
...  

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides in the presence of an external electron donor (reductant). In the classical O2-driven monooxygenase reaction, the reductant is needed in stoichiometric amounts. In a recently discovered, more efficient H2O2-driven reaction, the reductant would be needed only for the initial reduction (priming) of the LPMO to its catalytically active Cu(I) form. However, the influence of the reductant on reducing the LPMO or on H2O2 production in the reaction remains undefined. Here, we conducted a detailed kinetic characterization to investigate how the reductant affects H2O2-driven degradation of 14C-labeled chitin by a bacterial LPMO, SmLPMO10A (formerly CBP21). Sensitive detection of 14C-labeled products and careful experimental set-ups enabled discrimination between the effects of the reductant on LPMO priming and other effects, in particular enzyme-independent production of H2O2 through reactions with O2. When supplied with H2O2, SmLPMO10A catalyzed 18 oxidative cleavages per molecule of ascorbic acid, suggesting a “priming reduction” reaction. The dependence of initial rates of chitin degradation on reductant concentration followed hyperbolic saturation kinetics, and differences between the reductants were manifested in large variations in their half-saturating concentrations (KmRapp). Theoretical analyses revealed that KmRapp decreases with a decreasing rate of polysaccharide-independent LPMO reoxidation (by either O2 or H2O2). We conclude that the efficiency of LPMO priming depends on the relative contributions of reductant reactivity, on the LPMO's polysaccharide monooxygenase/peroxygenase and reductant oxidase/peroxidase activities, and on reaction conditions, such as O2, H2O2, and polysaccharide concentrations.


Author(s):  
Saioa Urresti ◽  
Alan Cartmell ◽  
Feng Liu ◽  
Paul H. Walton ◽  
Gideon J. Davies

The recent discovery of `lytic' polysaccharide monooxygenases, copper-dependent enzymes for biomass degradation, has provided new impetus for the analysis of unusual metal-ion sites in carbohydrate-active enzymes. In this context, the CAZY family GH124 endoglucanase from Ruminiclostridium thermocellum contains an unusual metal-ion site, which was originally modelled as a Ca2+ site but features aspartic acid, asparagine and two histidine imidazoles as coordinating residues, which are more consistent with a transition-metal binding environment. It was sought to analyse whether the GH124 metal-ion site might accommodate other metals. It is demonstrated through thermal unfolding experiments that this metal-ion site can accommodate a range of transition metals (Fe2+, Cu2+, Mn2+ and Ni2+), whilst the three-dimensional structure and mass spectrometry show that one of the histidines is partially covalently modified and is present as a 2-oxohistidine residue; a feature that is rarely observed but that is believed to be involved in an `off-switch' to transition-metal binding. Atomic resolution (<1.1 Å) complexes define the metal-ion site and also reveal the binding of an unusual fructosylated oligosaccharide, which was presumably present as a contaminant in the cellohexaose used for crystallization. Although it has not been possible to detect a biological role for the unusual metal-ion site, this work highlights the need to study some of the many metal-ion sites in carbohydrate-active enzymes that have long been overlooked or previously mis-assigned.


Sign in / Sign up

Export Citation Format

Share Document