Rheology of Highly Concentrated Emulsions – Concentration and Droplet Size Dependencies

2007 ◽  
Vol 17 (4) ◽  
pp. 42250-1-42250-9 ◽  
Author(s):  
Irina Masalova ◽  
Alexander Ya. Malkin

Abstract The concentration and size dependencies of elastic properties of highly concentrated w/o emulsions were studied. The range of weight concentration of the disperse phase was 90 - 96%, the range of the average droplet size was 16 - 20 mm, and the droplet size distribution remained unchanged. The disperse phase consists of droplets of over-cooled concentrated aqueous solutions of inorganic salts. The concentration range being studied lies above the limit of maximal close packing, j > jm. The droplet size distribution is fairly wide and the shape of droplets is polygonal. These factors alone determine possible new rheological effects, such as the elasticity and visco-plastic behaviour of emulsions, as well as the observed form of concentration and size dependencies of rheological properties of emulsions. The complete flow curves were measured for these fairly new emulsion systems. It emerged that they were similar to the entire concentration and droplet size ranges being studied. The concentration dependencies of the yield stress and storage modules corresponded to the Princen-Kiss theory with critical volume concentration approximately 0.71 - 0.74. However, this theory describes the size dependence of elastic modules incorrectly. A new model is proposed, which correctly describes the dependencies of elastic modules on both determining parameters - those of concentration and droplet size.

1999 ◽  
Vol 110 (2) ◽  
pp. 797-804 ◽  
Author(s):  
L. Ambrosone ◽  
A. Ceglie ◽  
G. Colafemmina ◽  
G. Palazzo

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3024
Author(s):  
Qi Wang ◽  
Yang Zhu ◽  
Zhichao Ji ◽  
Jianshe Chen

The functional and sensory properties of food emulsion are thought to be complicated and influenced by many factors, such as the emulsifier, oil/fat mass fraction, and size of oil/fat droplets. In addition, the perceived texture of food emulsion during oral processing is mainly dominated by its rheological and tribological responses. This study investigated the effect of droplet size distribution as well as the content of oil droplets on the lubrication and sensory properties of o/w emulsion systems. Friction curves for reconstituted milk samples (composition: skimmed milk and milk cream) and Casein sodium salt (hereinafter referred to as CSS) stabilized model emulsions (olive oil as oil phase) were obtained using a soft texture analyzer tribometer with a three ball-on-disc setup combined with a soft surfaces (PDMS) tribology system. Sensory discrimination was conducted by 22 participants using an intensity scoring method. Stribeck curve analyses showed that, for reconstituted milk samples with similar rheological properties, increasing the volume fraction of oil/fat droplets in the size range of 1–10 µm will significantly enhance lubrication, while for CSS-stabilized emulsions, the size effect of oil/fat droplets reduced to around 1 µm. Surprisingly, once the size of oil/fat droplets of both systems reached nano size (d90 = 0.3 µm), increasing the oil/fat content gave no further enhancement, and the friction coefficient showed no significant difference (p > 0.05). Results from sensory analysis show that consumers are capable of discriminating emulsions, which vary in oil/fat droplet size and in oil/fat content (p < 0.01). However, it appeared that the discrimination capability of the panelist was significantly reduced for emulsions containing nano-sized droplets.


2000 ◽  
Vol 65 (11) ◽  
pp. 829-837
Author(s):  
Goran Vladisavljevic ◽  
Sabine Brösel ◽  
Helmar Schubert

The preparation of fine and monodispersed water-in-oil (W/O) emulsions by utilizing hydrophobic hollow polypropylene fibers with 0.4 mm pores was investigated in this work. The experiments were carried out using demineralized water as the disperse phase, mineral oil Velocite No. 3 as the continuous phase, and polyglycerol polyricinoleate (PGPR 90) in the concentration range of 2.5 - 10 wt % as the oil-soluble emulsifier. The size of the water droplets in the prepared emulsions and the droplet size distribution strongly depend on the content of the disperse phase, the transmembrane pressure difference, and the emulsifier concentration. Stable emulsions with a very narrow droplet size distribution and a mean droplet diameter lower than 0.27 ?m were produced using 10 wt % PGPR 90 at a pressure difference below 30 kPa.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


2014 ◽  
Vol 32 (14) ◽  
pp. 1655-1663 ◽  
Author(s):  
Leila Kavoshi ◽  
Mohammad S. Hatamipour ◽  
Amir Rahimi ◽  
Mehdi Momeni

Sign in / Sign up

Export Citation Format

Share Document