scholarly journals Quantum Mechanical Explanation for Dark Energy, Cosmic Coincidence, Flatness, Age, and Size of the Universe

2019 ◽  
Vol 28 (1) ◽  
pp. 220-227 ◽  
Author(s):  
Biswaranjan Dikshit

Abstract One of the most important problems in astronomy is the cosmological constant problem in which conventional calculation of vacuum energy density using quantum mechanics leads to a value which is ~10123 times more than the vacuum energy estimated from astronomical observations of expanding universe. The cosmic coincidence problem questions why matter energy density is of the same order of magnitude as the vacuum energy density at present time. Finally, the mechanism responsible for spatial flatness is not clearly understood. In this paper, by taking the vacuum as a finite and closed quantum oscillator, we solve all of the above-mentioned problems. At first, by using the purely quantum mechanical approach, we predict that the dark energy density is c4/(GR2) = 5.27×10−10 J/m3 (where R is radius of 3-sphere of the universe) and matter energy density is c4/(2GR2) = 2.6×10−10 J/m3 which match well with astronomical observations. We also prove that dark energy has always been ~66.7% and matter energy has been ~33.3% of the total energy and thus solve the cosmic coincidence problem. Next, we show how flatness of space could be maintained since the early stage of the universe. Finally, using our model, we derive the expression for age and radius of the universe which match well with the astronomical data.

Author(s):  
Biswaranjan Dikshit

Although general relativity has been successful in explaining many astronomical phenomena, few problems about the contents and evolution of the universe have remained mysterious since last century. Most important of them is the cosmological constant problem in which conventional calculation of vacuum (or dark) energy density using quantum mechanics leads to a value ~10114 J/m3 which is ~10123 times more than the vacuum energy (5.3×10-10 J/m3) estimated from astronomical observations of expanding universe. Similarly, cosmic coincidence problem questions why the matter energy density (ordinary plus dark matter) is of the same order as the vacuum energy density at present time. Finally, the mechanism responsible for spatial flatness and expansion of the universe are not clearly understood. In this paper, by taking the vacuum as a finite and closed quantum oscillator, we solve all of the above-mentioned problems. At first, by using purely quantum mechanical approach, we predict that the dark energy density is c4/(GR2) = 5.27×10-10 J/m3 (where R is radius of 3-sphere of universe) and matter energy density is c4/(2GR2) = 2.6×10-10 J/m3 which match well with astronomical observations. We also prove that the dark energy has always been ~66.7% and matter energy has been ~33.3% of total energy and hence, the so called cosmic coincidence problem doesn’t exist. Next, we show how flatness of space could be maintained since the early stage of universe. Finally, using our model, we derive the expression for age and radius of universe which match well with the astronomical data.


Author(s):  
Biswaranjan Dikshit

In this paper, by taking the structure of universe to be a 3-sphere and assuming that the zero-point oscillator for all particles is same, we derive an analytical expression for  vacuum (or dark) energy density and eliminate the discrepancy of ~10123 between quantum mechanical prediction and astronomical observation. Thus, we solve the cosmological constant problem. Then, using the analytical expression of the dark energy, we derive the expression for non-vacuum contribution to energy density (ordinary/dark matter, radiation) and show that ratio between non-vacuum to vacuum energy is ~1/2, thus solving the cosmic coincidence problem which questions why the matter energy density is of the same order as the vacuum energy density. Finally, using the above expressions for energy density, observed flatness of space is explained, Hubble’s constant is proved to be exactly equal to the reciprocal of the age of universe and size of universe is estimated. The calculated age and radius of universe comes out to be ~14.4 billion years and ~50 billion light years respectively which match well with the astronomically observed data.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2004 ◽  
Vol 19 (02) ◽  
pp. 117-134 ◽  
Author(s):  
MANASSE R. MBONYE

The early cosmic inflation, when taken along with the recent observations that the universe is currently dominated by a low density vacuum energy, leads to at least two potential problems which modern cosmology must address. First, there is the old cosmological constant problem, with a new twist: the coincidence problem. Secondly, cosmology still lacks a model to predict the observed current cosmic acceleration and to determine whether or not there is a future exit out of this state (as previously in the inflationary case). This constitutes (what is called here) a dynamical problem. Here a framework is proposed to address these two problems, based on treating the cosmic background vacuum (dark) energy as both dynamical and interacting. The universe behaves as a vacuum-driven cosmic engine which, in search of equilibrium, always back-reacts to vacuum-induced accelerations by increasing its inertia (internal energy) through vacuum energy dissipation. The process couples cosmic vacuum (dark) energy to matter to produce future-directed increasingly comparable amplitudes in these fields by setting up oscillations in the decaying vacuum energy density and corresponding sympathetic ones in the matter fields. By putting bounds on the relative magnitudes of these coupled oscillations the model offers a natural and conceptually simple channel to discuss the coincidence problem, while also suggesting a way to deal with the dynamical problem. A result with important observational implications is an equation of state w(t) which specifically predicts a variable, quasi-periodic, acceleration for the current universe. This result can be directly tested by future observational techniques such as SNAP.


Author(s):  
Tomohide Sonoda

Recent observations of the dark energy density demonstrates the fine-tuning problem and challenges in theoretical modelling. In this study, we apply the self-similar symmetry (SSS) model, describing the hierarchical structure of the universe based on the Dirac large numbers hypothesis, to Einstein's cosmological term. We introduce a new similarity dimension, DB, in the SSS model. Using the DB SSS model, the cosmological constant, vacuum energy density, and Hubble parameter can be simply expressed as a function of the cosmic microwave background (CMB) temperature. We show that the initial value of the vacuum energy density at the creation of the universe is ρ0 = 1/8παf6, where αf is the fine structure constant. The results indicate that the CMB is the primary factor for the evolution of the universe, providing a unified understanding of the problems of naturalness.


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prasenjit Paul ◽  
Rikpratik Sengupta

It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.


1992 ◽  
Vol 07 (05) ◽  
pp. 419-426 ◽  
Author(s):  
CHUL H. LEE

The dynamics of matter distribution that may contaminate a false vacuum bubble is considered. In the case of uniform dust distribution, it is shown that the distribution eventually collapses (expands) if the matter energy density is greater (smaller) than twice the false vacuum energy density. The effect of matter distribution on the dynamics of the bubble wall is discussed.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3426-3436 ◽  
Author(s):  
MARTIN L. PERL

Over the last decade, astronomical observations show that the acceleration of the expansion of the universe is greater than expected from our understanding of conventional general relativity, the mass density of the visible universe, the size of the visible universe and other astronomical measurements. The additional expansion has been attributed to a variety of phenomenon that have been given the general name of dark energy. Dark energy in the universe seems to comprise a majority of the energy in the visible universe amounting to about three times the total mass energy. But locally the dark energy density is very small. However it is not zero. In this paper I describe the work of others and myself on the question of whether dark energy density can be directly detected. This is a work-in-progress and I have no answer at present.


2012 ◽  
Vol 27 (11) ◽  
pp. 1250063 ◽  
Author(s):  
C. FROGGATT ◽  
R. NEVZOROV ◽  
H. B. NIELSEN

In N = 1 supergravity supersymmetric and nonsupersymmetric Minkowski vacua originating in the hidden sector can be degenerate. In the supersymmetric phase in flat Minkowski space, nonperturbative supersymmetry breakdown may take place in the observable sector, inducing a nonzero and positive vacuum energy density. Assuming that such a supersymmetric phase and the phase in which we live are degenerate, we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the split SUSY scenario of SUSY breaking if the SUSY breaking scale is of order of 1010 GeV.


Sign in / Sign up

Export Citation Format

Share Document