scholarly journals CAN THE EXISTENCE OF DARK ENERGY BE DIRECTLY DETECTED?

2009 ◽  
Vol 24 (18n19) ◽  
pp. 3426-3436 ◽  
Author(s):  
MARTIN L. PERL

Over the last decade, astronomical observations show that the acceleration of the expansion of the universe is greater than expected from our understanding of conventional general relativity, the mass density of the visible universe, the size of the visible universe and other astronomical measurements. The additional expansion has been attributed to a variety of phenomenon that have been given the general name of dark energy. Dark energy in the universe seems to comprise a majority of the energy in the visible universe amounting to about three times the total mass energy. But locally the dark energy density is very small. However it is not zero. In this paper I describe the work of others and myself on the question of whether dark energy density can be directly detected. This is a work-in-progress and I have no answer at present.

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Pablo Alejandro Sánchez ◽  
Mauricio Bellini

We explore the possibility that the expansion of the universe can be driven by a condensate of spinors which are free of interactions in a 5D relativistic vacuum defined in an extended de Sitter spacetime which is Riemann flat. The extra coordinate is considered as noncompact. After making a static foliation on the extra coordinate, we obtain an effective 4D (inflationary) de Sitter expansion which describes an inflationary universe. We found that the condensate of spinors studied here could be an interesting candidate to explain the presence of dark energy in the early universe. The dark energy density which we are talking about is poured into smaller subhorizon scales with the evolution of the inflationary expansion.


Author(s):  
Biswaranjan Dikshit

Although general relativity has been successful in explaining many astronomical phenomena, few problems about the contents and evolution of the universe have remained mysterious since last century. Most important of them is the cosmological constant problem in which conventional calculation of vacuum (or dark) energy density using quantum mechanics leads to a value ~10114 J/m3 which is ~10123 times more than the vacuum energy (5.3×10-10 J/m3) estimated from astronomical observations of expanding universe. Similarly, cosmic coincidence problem questions why the matter energy density (ordinary plus dark matter) is of the same order as the vacuum energy density at present time. Finally, the mechanism responsible for spatial flatness and expansion of the universe are not clearly understood. In this paper, by taking the vacuum as a finite and closed quantum oscillator, we solve all of the above-mentioned problems. At first, by using purely quantum mechanical approach, we predict that the dark energy density is c4/(GR2) = 5.27×10-10 J/m3 (where R is radius of 3-sphere of universe) and matter energy density is c4/(2GR2) = 2.6×10-10 J/m3 which match well with astronomical observations. We also prove that the dark energy has always been ~66.7% and matter energy has been ~33.3% of total energy and hence, the so called cosmic coincidence problem doesn’t exist. Next, we show how flatness of space could be maintained since the early stage of universe. Finally, using our model, we derive the expression for age and radius of universe which match well with the astronomical data.


2006 ◽  
Vol 21 (07) ◽  
pp. 571-579 ◽  
Author(s):  
CHENGWU ZHANG ◽  
HONGYA LIU ◽  
LIXIN XU ◽  
PAUL S. WESSON

We use Wetterich's parametrization equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and we assume that the universe contains three major components: matter, radiation and dark energy. By using the relation between the scale factor and the redshift z, we show that the two arbitrary functions contained in the 5D solution could be solved out analytically in terms of the variable z. Thus the whole 5D solution could be constructed uniquely if the current values of the three density parameters Ωm0, Ωr0, Ωx0, the EOS w0, and the bending parameter b contained in the EOS are all known. Furthermore, we find that all the evolutions of the mass density Ωm, the radiation density Ωr, the dark energy density Ωx, and the deceleration parameter q depend on the bending parameter b sensitively. Therefore it is worthwhile to study observational constraints on the bending parameter b.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prasenjit Paul ◽  
Rikpratik Sengupta

It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.


2007 ◽  
Vol 16 (10) ◽  
pp. 1633-1640 ◽  
Author(s):  
YONGLI PING ◽  
LIXIN XU ◽  
CHENGWU ZHANG ◽  
HONGYA LIU

We discuss the exact solutions of brane universes and the results indicate that the Friedmann equations on the branes are modified with a new density term. Then, we assume the new term as the density of dark energy. Using Wetterich's parametrization equation of state (EOS) of dark energy, we obtain that the new term varies with the redshift z. Finally, the evolutions of the mass density parameter Ω2, dark energy density parameter Ωx and deceleration parameter q2 are studied.


2005 ◽  
Vol 20 (16) ◽  
pp. 1209-1215 ◽  
Author(s):  
PHAM QUANG HUNG ◽  
HEINRICH PÄS

We consider neutrinos with varying masses which arise in scenarios relating neutrino masses to the dark energy density in the universe. We point out that the neutrino mass variation can lead to level crossing and thus a cosmo MSW effect, having dramatic consequences for the flavor ratio of astrophysical neutrinos.


2006 ◽  
Vol 21 (21) ◽  
pp. 4373-4406 ◽  
Author(s):  
E. I. GUENDELMAN ◽  
A. B. KAGANOVICH

There exist field theory models where the fermionic energy–momentum tensor contains a term proportional to [Formula: see text] which may contribute to the dark energy. We show that this new field theory effect can be achieved in the Two Measures Field Theory (TMT) in the cosmological context. TMT is an alternative gravity and matter field theory where the gravitational interaction of fermionic matter is reduced to that of General Relativity when the energy density of the fermion matter is much larger than the dark energy density. In this case also the fifth force problem is solved automatically. In the opposite limit, where the magnitudes of fermionic energy density and scalar field dark energy density become comparable, nonrelativistic fermions can participate in the cosmological expansion in a very unusual manner. Some of the features of such Cosmo-Low-Energy-Physics (CLEP) states are studied in a toy model of the late time universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos, and the following results are obtained: neutrino mass increases as m ∝ a3/2 (a is the scale factor); the proportionality factor in the noncanonical contribution to the neutrino energy–momentum tensor (proportional to the metric tensor) approaches a constant as a(t) → ∞ and therefore the noncanonical contribution to the neutrino energy density dominates over the canonical one ~ m/a3 ~ a-3/2 at the late enough universe; hence the neutrino gas equation-of-state approaches w = -1, i.e. neutrinos in the CLEP regime behave as a sort of dark energy as a → ∞; the equation-of-state for the total (scalar field + neutrino) energy density and pressure also approaches w = -1 in the CLEP regime; besides the total energy density of such universe is less than it would be in the universe filled with the scalar field alone. An analytic solution is presented. A domain structure of the dark energy seems to be possible. We speculate that decays of the CLEP state neutrinos may be both an origin of cosmic rays and responsible for a late super-acceleration of the universe. In this sense the CLEP states exhibit simultaneously new physics at very low densities and for very high particle masses.


2000 ◽  
Vol 15 (16) ◽  
pp. 1023-1029 ◽  
Author(s):  
ZONG-HONG ZHU

By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm, the dark energy density parameter Ωm and its equation of state ωx = px/ρx. It is shown that, the larger the dark energy density and the more negative its pressure, the higher is the gravitational lensing probability. This fact can provide an independent constraint for dark energy.


Sign in / Sign up

Export Citation Format

Share Document