Disturbance observer-based visual servoing for multirotor unmanned aerial vehicles

2018 ◽  
Vol 66 (3) ◽  
pp. 258-267 ◽  
Author(s):  
Hui Xie ◽  
Zhen He ◽  
Darryl Veitch

Abstract This paper presents a disturbance observer based input saturated visual servoing law for a quadrotor unmanned aerial vehicle (UAV). The controller regulates the 4D relative pose, i. e., 3D translational and yaw motion, between the vehicle and a planar horizontal visual target in an environment with external disturbances. A feedforward control is used to compensate the lumped disturbance consisting of both system uncertainties and external disturbances. The feedback control part is based on a nested saturation control, which is used to bound the orientation of the UAV and therefore helps to keep the visual target in the camera’s field of view. Simulation results are provided to demonstrate controller performance.

2017 ◽  
Vol 05 (01) ◽  
pp. 1-17 ◽  
Author(s):  
Geoff Fink ◽  
Hui Xie ◽  
Alan F. Lynch ◽  
Martin Jagersand

This paper presents a dynamic image-based visual servoing (IBVS) control law for a quadrotor unmanned aerial vehicle (UAV) equipped with a single fixed on-board camera. The motion control problem is to regulate the relative position and yaw of the vehicle to a moving planar target located within the camera’s field of view. The control law is termed dynamic as it’s based on the dynamics of the vehicle. To simplify the kinematics and dynamics, the control law relies on the notion of a virtual camera and image moments as visual features. The convergence of the closed-loop is proven to be globally asymptotically stable for a horizontal target. In the case of nonhorizontal targets, we modify the control using a homography decomposition. Experimental and simulation results demonstrate the control law’s performance.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5708
Author(s):  
Ching-Wen Chen ◽  
Hsin-Ai Hung ◽  
Po-Hung Yang ◽  
Teng-Hu Cheng

To track moving targets undergoing unknown translational and rotational motions, a tracking controller is developed for unmanned aerial vehicles (UAVs). The main challenges are to control both the relative position and orientation between the target and the UAV to within desired values, and to guarantee that the generated control input to the UAV is feasible (i.e., below its motion capability). Moreover, the UAV is controlled to ensure that the target always remains within the field of view of the onboard camera. These control objectives were achieved by developing a nonlinear-model predictive controller, in which the future motion of the target is predicted by quadratic programming (QP). Since constraints of the feature vector and the control input are considered when solving the optimal control problem, the control inputs can be bounded and the target can remain inside the image. Three simulations were performed to compare the efficacy and performance of the developed controller with a traditional image-based visual servoing controller.


2021 ◽  
pp. 106891
Author(s):  
Chengbin Chen ◽  
Sifan Chen ◽  
Guangsheng Hu ◽  
Baihe Chen ◽  
Pingping Chen ◽  
...  

Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2015 ◽  
Vol 3 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Geoff Fink ◽  
Hui Xie ◽  
Alan F. Lynch ◽  
Martin Jagersand

This paper proposes a dynamic image-based visual servoing (IBVS) control law for a quadrotor unmanned aerial vehicle (UAV) equipped with a single fixed on-board camera facing downward. The motion control problem is to regulate the relative lateral position of the vehicle to a stationary target located on the ground. The control law is termed dynamic as it is based on the dynamics and kinematics of the vehicle. The proposed design uses a nonlinear input-dependent change of state coordinates and its error dynamics are proven to be locally exponentially stable with an estimate provided for the region of attraction. Experimental and simulation results demonstrate the method's ease of on-board implementation, performance, and robustness. The simulation and experimental results include a comparison with an established dynamic IBVS method. This comparison shows the proposed method can provide similar performance with the benefit of reduced complexity.


Author(s):  
Sungwook Cho ◽  
David Hyunchul Shim

This paper proposes a Gaussian process based visual servoing framework for an aerial parallel manipulator. Our aerial parallel manipulator utilizes the on-board eye-in-hand vision sensor system attached on the end-effector of three-degrees-of-freedom parallel manipulator. There are three major advantages: small, light in weight, and linearity with respect to the host vehicle rather than the serial manipulator, but it has a critical drawback that its workspace is too small to perform the mission itself during the hovering. In order to overcome the limited workspace problem and perform the mission more actively, proposed visual servoing framework is proposed to generate relative body velocity commands of the host vehicle by using the interpolated and extrapolated feature path between the initial and desired features to fed into the underactuated aerial parallel manipulator. It can generate not only numerical stable but also feasible control input. Furthermore, it can overcome the weakness of the traditional image-based visual servoing such as singularities, uncertainties, and local minimums during calculating image Jacobian under the large disparity environment between the target and the unmanned aerial vehicle. As a result of the proposed contribution, we show that our contribution is reliable to perform the picking-and-replacement autonomously, and it shows that it can be applied in the large displacement environments throughout the flight test.


Author(s):  
J. Li-Chee-Ming ◽  
C. Armenakis

This paper presents a novel application of the Visual Servoing Platform’s (ViSP) for pose estimation in indoor and GPS-denied outdoor environments. Our proposed solution integrates the trajectory solution from RGBD-SLAM into ViSP’s pose estimation process. Li-Chee-Ming and Armenakis (2015) explored the application of ViSP in mapping large outdoor environments, and tracking larger objects (i.e., building models). Their experiments revealed that tracking was often lost due to a lack of model features in the camera’s field of view, and also because of rapid camera motion. Further, the pose estimate was often biased due to incorrect feature matches. This work proposes a solution to improve ViSP’s pose estimation performance, aiming specifically to reduce the frequency of tracking losses and reduce the biases present in the pose estimate. This paper explores the integration of ViSP with RGB-D SLAM. We discuss the performance of the combined tracker in mapping indoor environments and tracking 3D wireframe indoor building models, and present preliminary results from our experiments.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2242
Author(s):  
Pengyu Qiao ◽  
Jun Yang ◽  
Chen Dai ◽  
Xi Xiao

The nonlinearities of piezoelectric actuators and external disturbances of the piezoelectric nanopositioning stage impose great, undesirable influences on the positioning accuracy of nanopositioning stage systems. This paper considers nonlinearities and external disturbances as a lumped disturbance and designs a composite control strategy for the piezoelectric nanopositioning stage to realize ultra-high precision motion control. The proposed strategy contains a composite disturbance observer and a continuous terminal sliding mode controller. The composite disturbance observer can estimate both periodic and aperiodic disturbances so that the composite control strategy can deal with the disturbances with high accuracy. Meanwhile, the continuous terminal sliding mode control is employed to eliminate the chattering phenomenon and speed up the convergence rate. The simulation and experiment results show that the composite control strategy achieves accurate estimation of different forms of disturbances and excellent tracking performance.


2013 ◽  
Vol 21 (5) ◽  
pp. 1213-1221 ◽  
Author(s):  
张艳 ZHANG Yan ◽  
张淑梅 ZHANG Shu-mei ◽  
乔彦峰 QIAO Yan-feng

Sign in / Sign up

Export Citation Format

Share Document