Reliable software-based control as enabler for flexible production systems

2017 ◽  
Vol 65 (12) ◽  
Author(s):  
Santiago Soler Perez Olaya ◽  
Stefan Mätzler ◽  
Martin Wollschlaeger

AbstractThe current evolution of the industrial production systems to cyber physical production systems requires an increased flexibility of the system structure that is nowadays still difficult to find in the industrial systems. The control applications are extremely strict by requiting jitter-free communication of sensor and control values in networked control systems. The software-based control approach presented here enhances the reliability of the control system using a control value matrix as information source. This approach benefits of predictive control algorithms that rely on model-based strategies.

Author(s):  
Elvis Hozdić

The objective of this research is to develop a new ontology-based approach for the management and control of cyber-physical production systems (CPPSs). In the CPPSs, the management and control functions are integrated with a physical part of manufacturing system. The function of production planning and control of manufacturing systems (PPC) is an important part of the management and control of the CPPSs. The elements of the cyber system structure enable the dynamic management and control of manufacturing systems in real time, through the realization of the digitalized and cybernated functions of PPC. The proposed approach to management and control of the CPPSs is based on the foundational ontology of manufacturing systems. The digitalized production planning, scheduling, and control functions are implemented as a multi-agent system (MAS). The communication between agents was addressed to support the autonomic decision for each individual agent. A case study demonstrates feasibility of the approach through the use of simulation experiments.


2020 ◽  
Author(s):  
Νικόλαος Νικολάκης

Αντικείμενο αυτής της εργασίας είναι η μελέτη των συστημάτων παραγωγής ως κυβερνο-φυσικών συστημάτων επικεντρώνοντας στον προσαρμοστικό σχεδιασμό/προγραμματισμό κι έλεγχό τους. Απώτερος σκοπός είναι η δυνατότητα αναδιαμόρφωσής τους για την αύξηση της αυτοματοποίησης και της ευελιξίας στις συνθήκες εργασίας καθώς και σε μεταβαλλόμενες απαιτήσεις παραγωγής. Για αυτό το λόγο, μέθοδοι, που μεταφράζονται σε διαφορετικά επίπεδα της πυραμίδας αυτοματισμού, μέσω της αρχιτεκτονικής 5C για κυβερνο-φυσικά συστήματα, έχουν διερευνηθεί κι ενσωματωθεί σε υπό-μελέτη κυβερνο-φυσικά συστήματα. Πρώτον, μελετάται ο δυναμικός έλεγχος κλειστού βρόχου ενός κυβερνο-φυσικού συστήματος σχετικά με την ασφαλή συνεργασία ανθρώπου-ρομπότ σε ένα περιβάλλον εργασίας. Μια αρχική εφαρμογή αξιολογείται σε μια συγκεκριμένη περίπτωση χρήσης και συγκρίνονται τα αποτελέσματά της σχετικά με τη χρήση ενός ή περισσοτέρων αισθητήρων. Η σύγκριση πραγματοποιείται με βάση τον χρόνο απόκρισης του συστήματος για την ανίχνευση της ανθρώπινης παρουσίας εντός μιας προκαθορισμένης ζώνης ασφαλείας. Στη συνέχεια, εξετάζονται οι χειρωνακτικές εργασίες συναρμολόγησης, συζητείται ο προσαρμοστικός προγραμματισμός και ο επαναπροσδιορισμός του σταθμού συναρμολόγησης. Η εφαρμογή ψηφιακού διδύμου παρουσιάζεται για να κλείσει ψηφιακά το βρόχο μεταξύ φυσικού και εικονικού συστήματος, επιτρέποντας έτσι μια αποτελεσματική, από πλευράς κόστους, βελτίωση του σχεδιασμού, της ανάθεσης καθώς και ολόκληρου του κύκλου ζωής των διαδικασιών παραγωγής με βάση τον άνθρωπο. Μια μελέτη περίπτωσης σε χώρο αποθήκης καταδεικνύει τη σκοπιμότητα και αποτελεσματικότητα της προτεινόμενης προσέγγισης. Επίσης, στο πλαίσιο της τρίτης μελέτης, συζητείται ένα ολιστικό πλαίσιο για τα αναδιαμορφώσιμα κυβερνο-φυσικά συστήματα παραγωγής, που υλοποιούνται από τις τεχνολογίες των υπηρεσιών πακέτων λογισμικού (containers). Η παρουσιαζόμενη προσέγγιση ενισχύει την ευελιξία σε ένα κυβερνο-φυσικό σύστημα παραγωγής μέσω της δυναμικής αναδιάρθρωσης του συστήματος αυτοματισμού και του χρονοδιαγράμματος παραγωγής, με βάση τα συμβάντα. Η προτεινόμενη λύση υλοποιήθηκε σε μια εφαρμογή λογισμικού και εφαρμόστηκε σε ένα κυβερνο-φυσικό σύστημα παραγωγής μικρής κλίμακας που προέρχεται από την αυτοκινητοβιομηχανία. Τέλος, η συμβολή των στρωμάτων ολοκλήρωσης της αρχιτεκτονικής 5C για την υλοποίηση και την ανάπτυξη λειτουργιών CPPS, που μετατρέπει τις συμβατικές διαδικασίες παραγωγής σε έξυπνες, έχει αξιολογηθεί μέσω ενός συνόλου δεικτών επιπέδου ευελιξίας μέσω του αυτοματισμού και δεικτών χαρακτηριστικών των κυβερνο-φυσικών συστημάτων παραγωγής.


2021 ◽  
Author(s):  
Daniel Ribeiro ◽  
António Almeida ◽  
Américo Azevedo ◽  
Filipe Ferreira

We live in a world where companies are shifting to the industry 4.0 paradigm. One of the pillars of Industry 4.0 is the digitalization of physical assets and manufacturing processes, moving toward the Cyber-Physical Production Systems concept (CPPS). In these systems, every component of the production process – machines, tools, workstations, etc. – is equipped with sensors, possesses information about itself, and can interact with each other, allowing the production of smaller batches at lower prices and increase product customization through adaptative processes. Consequently, companies are evolving their information systems to have more visibility and control over their production systems. This change increases both the production system’s agility and its vulnerability to communication and information related disruptions. Hence, companies that adhere to Industry 4.0 enabling technologies must adopt new methodologies and tools to become aware of the new risks that arise by the introduction of new digital platforms, their impacts in the production systems, and how they may react to remain resilient. In this paper, disruption events and adequate mitigation strategies are analysed, modelled, and simulated as part of a methodology designed to measure the impacts of disruptive events on the production system.


2018 ◽  
Vol 108 (04) ◽  
pp. 217-220
Author(s):  
M. Glatt ◽  
J. Aurich

Cyber-physische Produktionssysteme erlauben die wirtschaftliche Herstellung kundenindividueller Produkte in großen Stückzahlen. In diesem Beitrag wird gezeigt, wie die physikalische Modellierung genutzt werden kann, um Materialflussprozesse in cyber-physischen Produktionssystemen zu simulieren. Ziel ist, durch simulationsbasierte Steuerungseingriffe Störungen im Materialfluss zu reduzieren und Durchlaufzeiten zu verringern.   Cyber-physical production systems make it possible to economically manufacture customized products in large quantities. The goal of this article is to show how physical modeling can be used to simulate material flow processes in cyber-physical production systems. Based on the simulation results, control interventions can contribute to reduce disruptions in the material flow and shorten lead times.


Author(s):  
Marco Wurster ◽  
Marius Michel ◽  
Marvin Carl May ◽  
Andreas Kuhnle ◽  
Nicole Stricker ◽  
...  

AbstractRemanufacturing includes disassembly and reassembly of used products to save natural resources and reduce emissions. While assembly is widely understood in the field of operations management, disassembly is a rather new problem in production planning and control. The latter faces the challenge of high uncertainty of type, quantity and quality conditions of returned products, leading to high volatility in remanufacturing production systems. Traditionally, disassembly is a manual labor-intensive production step that, thanks to advances in robotics and artificial intelligence, starts to be automated with autonomous workstations. Due to the diverging material flow, the application of production systems with loosely linked stations is particularly suitable and, owing to the risk of condition induced operational failures, the rise of hybrid disassembly systems that combine manual and autonomous workstations can be expected. In contrast to traditional workstations, autonomous workstations can expand their capabilities but suffer from unknown failure rates. For such adverse conditions a condition-based control for hybrid disassembly systems, based on reinforcement learning, alongside a comprehensive modeling approach is presented in this work. The method is applied to a real-world production system. By comparison with a heuristic control approach, the potential of the RL approach can be proven simulatively using two different test cases.


2019 ◽  
Vol 109 (04) ◽  
pp. 250-254
Author(s):  
A. Lottermoser ◽  
C. Härdtlein ◽  
J. Schollerer ◽  
C. Richter ◽  
G. Reinhart

Durch die im Rahmen der Industrie 4.0 forcierte Entwicklung zu einer dynamischen, wandlungsfähigen und flexiblen Produktion ergeben sich vor allem für die Produktionsplanung und -steuerung (PPS) neue Herausforderungen. Neben einem robusten Produktionsablauf und dynamischen Einflüssen müssen in Zukunft neue Ressourcen bei der Auftragsplanung berücksichtigt werden. Die Einplanung mobiler Robotersysteme ruft zusätzliche Einflussfaktoren hervor, die PPS-seitig bewerkstelligt werden müssen.   The development towards dynamic, versatile and flexible production systems in the context of Industry 4.0 creates new challenges for production planning and control (PPC). Next to a robust production process and dynamic influences, new resources have to be taken into account in the future. The scheduling of mobile autonomous robot systems is an additional influencing factor that has to be considered by PPC systems.


2015 ◽  
Vol 105 (04) ◽  
pp. 184-189
Author(s):  
E. Uhlmann ◽  
B. Schallock ◽  
F. Otto

Die „intelligente selbstorganisierende Werkstattproduktion“ (iWePro) folgt dem Konzept einer dezentralisierten Produktionssteuerung. Erstmalig wird die Anwendung der Selbstorganisation auf die Serienproduktion von Automobilkomponenten untersucht, die momentan nach Lean-Prinzipien für große Stückzahlen verkettet aufgebaut ist. Zukünftig soll mit dem Werkstattprinzip schwankenden Auslastungen entgegengewirkt werden. Die Fertigungssteuerung für die dadurch wahlfrei zugreifbaren Produktionsmaschinen lässt sich konventionell kaum, wohl aber mit Zukunftskonzepten und Industrie 4.0-Technologien umsetzen.   “Intelligent self-organizing shop floor production” (iWePro) uses the concept of decentralized production control solutions. For the first time, a concept of self-organization is applied to the production of car components, which are currently a moving line according to traditional lean production large batch principles. In the future, the traditional shop floor structure of disconnected machines should guarantee a higher utilisation rate but needs innovative technology and control mechanisms for cyber-physical production systems (CPPS).


Sign in / Sign up

Export Citation Format

Share Document