MLL-SEPTIN gene fusions in hematological malignancies

2011 ◽  
Vol 392 (8-9) ◽  
pp. 713-724 ◽  
Author(s):  
Nuno Cerveira ◽  
Susana Bizarro ◽  
Manuel R. Teixeira

AbstractThe mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias.MLLrearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions andMLLgene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2,SEPT5,SEPT6,SEPT9, andSEPT11) have been identified asMLLfusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of bothMLLand its septin fusion partner, originating distinct gene fusion variants.MLL-SEPTIN rearrangements have been repeatedly identified inde novoand therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.

2017 ◽  
Author(s):  
Nuno A. Fonseca ◽  
Yao He ◽  
Liliana Greger ◽  
Alvis Brazma ◽  
Zemin Zhang ◽  
...  

Gene fusions are an important class of cancer-driving events with therapeutic and diagnostic values, yet their underlying genetic mechanisms have not been systematically characterized. Here by combining RNA and whole genome DNA sequencing data from 1188 donors across 27 cancer types we obtained a list of 3297 high-confidence tumour-specific gene fusions, 82% of which had structural variant (SV) support and 2372 of which were novel. Such a large collection of RNA and DNA alterations provides the first opportunity to systematically classify the gene fusions at a mechanistic level. While many could be explained by single SVs, numerous fusions involved series of structural rearrangements and thus are composite fusions. We discovered 75 fusions of a novel class of inter-chromosomal composite fusions, termed bridged fusions, in which a third genomic location bridged two different genes. In addition, we identified 522 fusions involving non-coding genes and 157 ORF-retaining fusions, in which the complete open reading frame of one gene was fused to the UTR region of another. Although only a small proportion (5%) of the discovered fusions were recurrent, we found a set of highly recurrent fusion partner genes, which exhibited strong 5’ or 3’ bias and were significantly enriched for cancer genes. Our findings broaden the view of the gene fusion landscape and reveal the general properties of genetic alterations underlying gene fusions for the first time.


1987 ◽  
Vol 166 (3) ◽  
pp. 637-646 ◽  
Author(s):  
M Heller ◽  
J D Owens ◽  
J F Mushinski ◽  
S Rudikoff

Murine V kappa-J kappa recombination is characterized by a maintenance of size at the site of recombination and the use of nucleic acids found only in germline sequences. This is in contrast to heavy chain VH-D-JH assembly where random nucleotides are added at the recombination sites to produce considerable size variation, even though the heptamer/nonomer recombination sequences are identical in both kappa and heavy chain genes. We have examined the origin of an unusual amino acid, Ile, found at the site of V kappa-J kappa recombination in antigalactan antibodies, by sequence analysis of the corresponding rearranged and germline genes. Results indicate that the Ile codon can be generated by use of a single nucleotide 3' of the V kappa segment in combination with the second and third nucleotides of the first codon of J kappa 5 or J kappa 4. However, several antigalactan antibodies express Ile in combination with J kappa 2. An Ile codon cannot be generated by recombination in any reading frame between germline V kappa and J kappa 2 segments. These results suggest that the origin of the Ile codon in lines using J kappa 2 may represent a novel even in murine light chain assembly, possibly similar to the de novo addition of nucleotides observed in heavy chain gene recombination.


1998 ◽  
Vol 66 (2) ◽  
pp. 567-572 ◽  
Author(s):  
William R. Schwan ◽  
Silvija N. Coulter ◽  
Eva Y. W. Ng ◽  
Michael H. Langhorne ◽  
Heather D. Ritchie ◽  
...  

ABSTRACT Staphylococcus aureus is an important pathogen of humans and other animals, causing bacteremia, abscesses, endocarditis, and other infectious syndromes. A signature-tagged mutagenesis (STM) system was adapted for use in studying the genes required for in vivo survival of S. aureus. An STM library was ultimately created in S. aureus RN6390, with Tn917 being used to create the transposon mutations. Pools of S. aureusRN6390 mutants were screened in mouse abscess, bacteremia, and wound infection models for growth attenuation after in vivo passage. One of the mutants that was identified displayed marked attenuation following large-pool screening in all three animal models, which was confirmed in bacteremia and endocarditis models of infection with a smaller pool of mutants. Sequence analysis of the entire open reading frame showed a 99% identity to the high-affinity proline permease (putP) gene characterized in another strain of S. aureus. In wound and murine abscess infection models, the putP mutant was approximately 10-fold more attenuated than was wild-type strain RN6390. Another S. aureus strain transduced with theputP mutation also displayed an attenuated phenotype after passage in the wound model. A [3H]proline uptake assay showed that less proline was specifically transported into theputP mutant than into strain RN6390. The reduced viability of the bacteria possessing the mutation in the S. aureushigh-affinity proline permease suggests that proline scavenging by the bacteria is important for in vivo growth and proliferation and that analogs of proline may serve as potential antistaphylococcal therapeutic agents.


1998 ◽  
Vol 180 (7) ◽  
pp. 1814-1821 ◽  
Author(s):  
Yong Yang ◽  
Ho-Ching Tiffany Tsui ◽  
Tsz-Kwong Man ◽  
Malcolm E. Winkler

ABSTRACT pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY + overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette intopdxY and crossed the resultingpdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts ofpdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show thatpdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon.pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in thetyrS-pdxY intercistronic region.


2021 ◽  
Vol 22 (23) ◽  
pp. 12906
Author(s):  
Masaya Mitsumoto ◽  
Kanna Sugaya ◽  
Kazuki Kazama ◽  
Ryosuke Nakano ◽  
Takahiro Kosugi ◽  
...  

G-protein coupled receptors (GPCRs) are known for their low stability and large conformational changes upon transitions between multiple states. A widely used method for stabilizing these receptors is to make chimeric receptors by fusing soluble proteins (i.e., fusion partner proteins) into the intracellular loop 3 (ICL3) connecting the transmembrane helices 5 and 6 (TM5 and TM6). However, this fusion approach requires experimental trial and error to identify appropriate soluble proteins, residue positions, and linker lengths for making the fusion. Moreover, this approach has not provided state-targeting stabilization of GPCRs. Here, to rationally stabilize a class A GPCR, adenosine A2A receptor (A2AR) in a target state, we carried out the custom-made de novo design of α-helical fusion partner proteins, which can fix the conformation of TM5 and TM6 to that in an inactive state of A2AR through straight helical connections without any kinks or intervening loops. The chimeric A2AR fused with one of the designs (FiX1) exhibited increased thermal stability. Moreover, compared with the wild type, the binding affinity of the chimera against the agonist NECA was significantly decreased, whereas that against the inverse agonist ZM241385 was similar, indicating that the inactive state was selectively stabilized. Our strategy contributes to the rational state-targeting stabilization of GPCRs.


2019 ◽  
Author(s):  
Joseph L. DeRisi ◽  
Greg Huber ◽  
Amy Kistler ◽  
Hanna Retallack ◽  
Michael Wilkinson ◽  
...  

ABSTRACTNarnaviruses have been described as positive-sense RNA viruses with a remarkably simple genome of ∼ 3 kb, encoding only a highly conserved RNA-dependent RNA polymerase (RdRp). Many narnaviruses, however, are ‘ambigrammatic’ and harbour an additional uninterrupted open reading frame (ORF) covering almost the entire length of the reverse complement strand. No function has been described for this ORF, yet the absence of stops is conserved across diverse narnaviruses, and in every case the codons in the reverse ORF and the RdRp are aligned. The > 3 kb ORF overlap on opposite strands, unprecedented among RNA viruses, motivates an exploration of the constraints imposed or alleviated by the codon alignment. Here, we show that only when the codon frames are aligned can all stop codons be eliminated from the reverse strand by synonymous single-nucleotide substitutions in the RdRp gene, suggesting a mechanism for de novo gene creation within a strongly conserved amino-acid sequence. It will be fascinating to explore what implications this coding strategy has for other aspects of narnavirus biology. Beyond narnaviruses, our rapidly expanding catalogue of viral diversity may yet reveal additional examples of this broadly-extensible principle for ambigrammatic-sequence development.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph L. DeRisi ◽  
Greg Huber ◽  
Amy Kistler ◽  
Hanna Retallack ◽  
Michael Wilkinson ◽  
...  

AbstractNarnaviruses have been described as positive-sense RNA viruses with a remarkably simple genome of ~3 kb, encoding only a highly conserved RNA-dependent RNA polymerase (RdRp). Many narnaviruses, however, are ‘ambigrammatic’ and harbour an additional uninterrupted open reading frame (ORF) covering almost the entire length of the reverse complement strand. No function has been described for this ORF, yet the absence of stops is conserved across diverse narnaviruses, and in every case the codons in the reverse ORF and the RdRp are aligned. The >3 kb ORF overlap on opposite strands, unprecedented among RNA viruses, motivates an exploration of the constraints imposed or alleviated by the codon alignment. Here, we show that only when the codon frames are aligned can all stop codons be eliminated from the reverse strand by synonymous single-nucleotide substitutions in the RdRp gene, suggesting a mechanism for de novo gene creation within a strongly conserved amino-acid sequence. It will be fascinating to explore what implications this coding strategy has for other aspects of narnavirus biology. Beyond narnaviruses, our rapidly expanding catalogue of viral diversity may yet reveal additional examples of this broadly-extensible principle for ambigrammatic-sequence development.


2018 ◽  
Vol 39 (7) ◽  
pp. 1014-1023 ◽  
Author(s):  
Servi J.C. Stevens ◽  
Vyne van der Schoot ◽  
Magalie S. Leduc ◽  
Tuula Rinne ◽  
Seema R. Lalani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document