scholarly journals Causes of motor system overload in step aerobics: Literature review

2017 ◽  
Vol 9 (1) ◽  
pp. 158-164
Author(s):  
Alicja Rutkowska-Kucharska

Summary Many publications have indicated the positive impact of step aerobics on health. Although step aerobics aims to improve endur­ance and other health parameters, injuries incurred from overload happen to both instructors and participants. Values of vertical ground reaction force (vGRF) while stepping on and off the bench do not lead to overload on the motor system - they are simi­lar to the values obtained for walking or stair climbing. One reason for injuries may be the step workout technique. Overloads may be caused by incorrect technique of foot positioning on the bench, small knee angle during stepping off, and small angle of trunk flexion. This study presents an overview of current research on the load of the motor system in step aerobics.

2019 ◽  
Vol 47 (11) ◽  
pp. 2608-2616 ◽  
Author(s):  
Matthew P. Ithurburn ◽  
Mark V. Paterno ◽  
Staci Thomas ◽  
Michael L. Pennell ◽  
Kevin D. Evans ◽  
...  

Background: While between-limb landing asymmetries after anterior cruciate ligament reconstruction (ACLR) are linked with poor function and risk of additional injury, it is not currently understood how landing symmetry changes over time after ACLR. Purpose/Hypothesis: The purpose was to investigate how double-legged drop vertical jump (DVJ) landing and single-legged drop-landing symmetry changed from the time of return-to-sport (RTS) clearance to 2 years later in a prospective cohort of young athletes after ACLR. It was hypothesized that double-legged DVJ landing and single-legged drop-landing symmetry would improve from the time of RTS to 2 years later. Study Design: Descriptive laboratory study. Methods: The authors followed 64 young athletes with primary, unilateral ACLR for 2 years after RTS clearance. At the time of RTS and 2 years later, between-limb symmetry values for biomechanical variables of interest (VOIs) were calculated with 3-dimensional motion analysis during double-legged DVJ and single-legged drop-landing tasks. VOIs included knee flexion excursion, peak internal knee extension moment, peak vertical ground-reaction force, and peak trunk flexion (for single-legged task only). Symmetry values and proportions of participants meeting 90% symmetry cutoffs were compared between time points. Results: For double-legged DVJ landing, symmetry values for all VOIs and the proportions meeting 90% cutoffs for peak internal knee extension moment and peak vertical ground-reaction force were higher at 2 years after RTS as compared with RTS. For single-legged drop-landing, symmetry values were higher for knee flexion excursion and lower for peak trunk flexion at 2 years after RTS as compared with RTS, but the proportions meeting 90% cutoffs for all VOIs did not differ between time points. Conclusion: Double-legged DVJ landing symmetry improved across VOIs over the 2 years after RTS following ACLR, while single-legged drop-landing did not improve as consistently. The implications of longitudinal landing asymmetry after ACLR should be further studied.


2015 ◽  
Vol 31 (6) ◽  
pp. 409-414 ◽  
Author(s):  
Danilo de Oliveira Silva ◽  
Ronaldo Briani ◽  
Marcella Pazzinatto ◽  
Deisi Ferrari ◽  
Fernando Aragão ◽  
...  

Individuals with patellofemoral pain (PFP) use different motor strategies during unipodal support in stair climbing activities, which may be assessed by vertical ground reaction force parameters. Thus, the aims of this study were to investigate possible differences in first peak, valley, second peak, and loading rate between recreational female athletes with PFP and pain-free athletes during stair climbing in order to determine the association and prediction capability between these parameters, pain level, and functional status in females with PFP. Thirty-one recreational female athletes with PFP and 31 pain-free recreational female athletes were evaluated with three-dimensional kinetics while performing stair climbing to obtain vertical ground reaction force parameters. A visual analog scale was used to evaluate the usual knee pain. The anterior knee pain scale was used to evaluate knee functional score. First peak and loading rate were associated with pain (r = .46, P = .008; r = .56, P = .001, respectively) and functional limitation (r = .31, P = .049; r = −.36, P = .032, respectively). Forced entry regression revealed the first peak was a significant predictor of pain (36.5%) and functional limitation (28.7%). Our findings suggest that rehabilitation strategies aimed at correcting altered vertical ground reaction force may improve usual knee pain level and self-reported knee function in females with PFP.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 957 ◽  
Author(s):  
Anas M. Tahir ◽  
Muhammad E. H. Chowdhury ◽  
Amith Khandakar ◽  
Sara Al-Hamouz ◽  
Merna Abdalla ◽  
...  

Gait analysis is a systematic study of human locomotion, which can be utilized in various applications, such as rehabilitation, clinical diagnostics and sports activities. The various limitations such as cost, non-portability, long setup time, post-processing time etc., of the current gait analysis techniques have made them unfeasible for individual use. This led to an increase in research interest in developing smart insoles where wearable sensors can be employed to detect vertical ground reaction forces (vGRF) and other gait variables. Smart insoles are flexible, portable and comfortable for gait analysis, and can monitor plantar pressure frequently through embedded sensors that convert the applied pressure to an electrical signal that can be displayed and analyzed further. Several research teams are still working to improve the insoles’ features such as size, sensitivity of insoles sensors, durability, and the intelligence of insoles to monitor and control subjects’ gait by detecting various complications providing recommendation to enhance walking performance. Even though systematic sensor calibration approaches have been followed by different teams to calibrate insoles’ sensor, expensive calibration devices were used for calibration such as universal testing machines or infrared motion capture cameras equipped in motion analysis labs. This paper provides a systematic design and characterization procedure for three different pressure sensors: force-sensitive resistors (FSRs), ceramic piezoelectric sensors, and flexible piezoelectric sensors that can be used for detecting vGRF using a smart insole. A simple calibration method based on a load cell is presented as an alternative to the expensive calibration techniques. In addition, to evaluate the performance of the different sensors as a component for the smart insole, the acquired vGRF from different insoles were used to compare them. The results showed that the FSR is the most effective sensor among the three sensors for smart insole applications, whereas the piezoelectric sensors can be utilized in detecting the start and end of the gait cycle. This study will be useful for any research group in replicating the design of a customized smart insole for gait analysis.


1991 ◽  
Vol 71 (3) ◽  
pp. 1119-1122 ◽  
Author(s):  
R. Kram

People throughout Asia use springy bamboo poles to carry the loads of everyday life. These poles are a very compliant suspension system that allows the load to move along a nearly horizontal path while the person bounces up and down with each step. Could this be an economical way to carry loads inasmuch as no gravitational work has to be done to lift the load repeatedly? To find out, an experiment was conducted in which four male subjects ran at 3.0 m/s on a motorized treadmill with no load and while carrying a load equal to 19% body wt with compliant poles. Oxygen consumption rate, vertical ground reaction force, and the force exerted by the load on the shoulders were measured. Oxygen consumption rate increased by 22%. The same increase has previously been observed when loads are carried with a backpack. Thus compliant poles are not a particularly economical method of load carriage. However, pole suspension systems offer important advantages: they minimize peak shoulder forces and loading rates. In addition, the peak vertical ground reaction force is only slightly increased above unloaded levels when loads are carried with poles.


2004 ◽  
Vol 13 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Scott Ross ◽  
Kevin Guskiewicz ◽  
William Prentice ◽  
Robert Schneider ◽  
Bing Yu

Objective:T o determine differences between contralateral limbs’ strength, proprio-ception, and kinetic and knee-kinematic variables during single-limb landing.Setting:Laboratory.Subjects:30.Measurements:Hip, knee, and foot isokinetic peak torques; anterior/posterior (AP) and medial/lateral (ML) sway displacements during a balance task; and stabilization times, vertical ground-reaction force (VGRF), time to peak VGRF, and knee-flexion range of motion (ROM) from initial foot contact to peak VGRF during single-limb landing.Results:The kicking limb had significantly greater values for knee-extension (P= .008) and -flexion (P= .047) peak torques, AP sway displacement (P= .010), knee-flexion ROM from initial foot contact to peak VGRF (P< .001), and time to peak VGRF (P= .004). No other dependent measures were significantly different between limbs (P> .05).Conclusion:The kicking limb had superior thigh strength, better proprioception, and greater knee-flexion ROM than the stance limb.


Sign in / Sign up

Export Citation Format

Share Document