scholarly journals Low expression of miR-192 in NSCLC and its tumor suppressor functions in metastasis via targeting ZEB2

2016 ◽  
Vol 11 (1) ◽  
pp. 293-297 ◽  
Author(s):  
Zhang Yunxia ◽  
Dong Hongying

AbstractObjectivesLung cancer is the leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) accounting for more than 80% of all lung cancer cases. The aim of this study was to investigate the function and underlying mechanism of microRNA-192 (miR-192) in metastasis of NSCLC cells.MethodsReal-time PCR was applied to quantify the expression of miR-192 in NSCLC tissues and cell lines, matched with their corresponding controls. The biological roles of miR-192 were studied in NSCLC cells using the wound healing and trans well invasion assays. Real-time PCR and western blot were used to evaluate the regulation of ZEB2 by miR- 192.ResultsMiR-192 was expressed significantly lower in NSCLC tissues/cells when compared with controls. Ectopic expression of miR-192 strongly inhibited cell migration and invasion in NSCLC A549 cells. Further investigation revealed ZEB2, an EMT regulator, was one of the downstream targets regulated by miR-192.ConclusionThese results suggested that miR-192 inhibits the metastasis of NSCLC cells by targeting ZEB2, and thus is an important tumor suppressor.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study. Methods CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ2-test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression. Results A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells. Conclusions Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in AGS and MKN-45 cells.


2020 ◽  
Author(s):  
Zhi-Gang Sun ◽  
Feng Pan ◽  
Jing-Bo Shao ◽  
Qian-Qian Yan ◽  
Lu Lu ◽  
...  

Abstract Background: Kinesin superfamily proteins (KIFs) serve as microtubule-dependent molecular motors, and are involved in the progression of many malignant tumors. In this study, we aimed to investigate the expression pattern and precise role of kinesin family member 21B (KIF21B) in non-small cell lung cancer (NSCLC). Methods: KIF21B expression in 72 cases of NSCLC tissues was measured by immunohistochemical staining (IHC). We used shRNA-KIF21B interference to silence KIF21B in NSCLC H1299 and A549 cells and normal lung epithelial bronchus BEAS-2B cells. The biological roles of KIF21B in the growth and metastasis abilities of NSCLC cells were measured by Cell Counting Kit-8 (CCK8), colony formation and Hoechst 33342/PI, wound-healing, and Transwell assays, respectively. Expression of apoptosis-related proteins was determined using western blot. The effect of KIF21B on tumor growth in vivo was examined using nude mice model. Results: KIF21B was up-regulated in NSCLC tissues, and correlated with pathological lymph node and pTNM stage, its high expression was predicted a poor prognosis of patients with NSCLC. Silencing of KIF21B mediated by lentivirus-delivered shRNA significantly inhibited the proliferation ability of H1299 and A549 cells. KIF21B knockdown increased apoptosis in H1299 and A549 cells, down-regulated the expression of Bcl-2 and up-regulated the expression of Bax and active Caspase 3. Moreover, KIF21B knockdown decreased the level of phosphorylated form of Akt (p-Akt) and Cyclin D1 expression in H1299 and A549 cells. In addition, silencing of KIF21B impeded the migration and invasion of H1299 and A549 cells. Further, silencing of KIF 21B dramatically inhibited xenograft growth in BALB/c nude mice. However, silencing of KIF21B did not affect the proliferation, migration and invasion of BEAS-2B cells.Conclusions: These results reveal that KIF21B is up-regulated in NSCLC and acts as an oncogene in the growth and metastasis of NSCLC, which may function as a potential therapeutic target and a prognostic biomarker for NSCLC.


2016 ◽  
Vol 62 (6) ◽  
pp. 638-644
Author(s):  
O.I. Brovkina ◽  
M.G. Gordiev ◽  
A.N. Toropovskiy ◽  
D.S. Khodyrev ◽  
R.F. Enikeev ◽  
...  

The presence of activating mutations in the EGFR gene influences cell proliferation, angiogenesis, and increases metastatic ability; it has a significant impact on the choice of medical therapy of non-small cell lung cancer (NSCLC). The use of targeted therapy with tyrosine kinase inhibitors requires performance of appropriate genetic tests. The aim of this study was to design a real-time PCR-based diagnostic kit for fast and cheap of EGFR mutations testing in paraffin blocks and plasma, and kit validation using samples from patients with NSCLC, and also comparative estimation of diagnostic features of real-time PCR with wild type blocking and digital PCR for mutation testing in blood plasma. The study included 156 patients with various types of adenocarcinoma differentiation. It was designed a simple and efficient real-time PCR-based method of detecting L858R activating mutation and del19 deletion in the EGFR gene for DNA isolated from paraffin blocks. Kit for EGFR mutations was validated using 411 samples of paraffin blocks. The proposed system showed high efficiency for DNA testing from paraffin blocks: a concordance with results of testing with therascreen® EGFR RGQ PCR Kit (`Qiagen`, Germany) was 100%. It has been shown the possibility of using this test system for the detection of mutations in plasma


Epigenomics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 513-530
Author(s):  
Xi Zeng ◽  
Chao Tan ◽  
Meile Mo ◽  
Xiaoling Qin ◽  
Xiaoyun Ma ◽  
...  

Aim: To explore the expression profiles and functions of circRNAs in hepatocellular carcinoma (HCC). Materials & methods: We obtained circRNA expression profiles through RNA sequencing. Expression levels of circRNAs were confirmed by quantitative real-time PCR. The effects on HCC progression were determined using Cell Counting Kit 8, clone formation and transwell assays. Results: We identified 114 upregulated and 144 downregulated circRNAs in HCC tissues. The results of quantitative real-time PCR showed that circGNAO1, circRNF180 and circMERTK were significantly downregulated in HCC tissues, whereas circSNX6 was significantly upregulated. CircRNF180 was associated with microvascular invasion. Overexpression of circRNF180 inhibits the proliferation, colony formation, migration and invasion of HCC cells. Conclusion: CircRNF180 may function as a tumor suppressor and could serve as a potential biomarker and therapeutic target in HCC.


Author(s):  
Haiping Xiao

Abstract Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Distant metastasis is thought to be one of the most important factors responsible for the failure of NSCLC therapy. MicroRNA-7-5p (miR-7-5p) has been demonstrated to be a tumor suppressor in breast cancer, hepatocarcinoma, prostate cancer and glioblastoma multiforme (GBM). However, its role in NSCLC is still not fully understood. This study evaluated the role of miR-7-5p in the progression of NSCLC and explored the underlying mechanism. Materials & methods The quantitative real-time PCR (qPCR), MTT, migration and invasion assays were used to evaluate the effects of miR-7-5p on the proliferation, migration and invasion of A549 and SPCA-1 cells. A tumor xenograft model was created to determine the effects of miR-7-5p on metastasis in vivo. The dual-luciferase reporter gene, neuro-oncological ventral antigen 2 (NOVA2) overexpression and western blotting assays were performed to explore the underlying mechanism. Results MiR-7-5p is downregulated in NSCLC tissues and lung cancer cell lines. It suppresses proliferation, migration, invasion and EMT marker expression in vitro and in vivo. Further study showed that miR-7-5p suppresses tumor metastasis of NSCLC by targeting NOVA2. Overexpression of NOVA2 attenuates the miR-7-5p-mediated inhibitory effect on lung cancer cells. Conclusion MiR-7-5p suppresses NSCLC metastasis. Targeting miR-7-5p may contribute to the success of NSCLC therapy.


2020 ◽  
Vol 10 (4) ◽  
pp. 435-442
Author(s):  
Ruowen Zhang ◽  
Aihua Ren ◽  
Zhaohui Wang ◽  
Dawei Wang

Lung cancer is one kind of the malignant tumor with high mortality. And non-small cell lung cancer is the main subtype of lung cancer. And the proteins of CLCA family (CLCA1, CLCA2 and CLCA4) played an inhibitory role in the occurrence and development of multiple types of tumors. However, the effect of CLCA4 on non-small cell lung cancer cells remains unclear. In our study, we used the lentivirus to establish the overexpressed CLCA4 A549 cells. Next, the CCK-8 and clone formation assays were performed to detect the changes of proliferation of A549 cells. The wound healing and transwell assays were performed to determine the changing of the migration and invasion of A549 cells. Then gemcitabine was used to treat these cells and the CCK-8, wound healing and transwell assays were carried out to detect the effect of the combination of gemcitabine and the overexpression of CLCA4 on the proliferation, migration and invasion of A549 cells. After the overexpression of CLCA4, the clone formation and mobility of A549 cells was enhanced. Furthermore, the overexpression of CLCA4 induced the apoptosis of A549 cells and promoted the expression of apoptosis related proteins. The combination of gemcitabine and the overexpression of CLCA4 further suppressed the proliferation, migration and invasion of A549 cells. CLCA4 inhibited the proliferation, migration and invasion of non-small cell lung cancer cells. CLCA4 also strengthened the sensitivity of non-small cell lung cancer cells for gemcitabine.


Sign in / Sign up

Export Citation Format

Share Document