Assessment of CSP-based two-stage channel selection approach and local transformation-based feature extraction for classification of motor imagery/movement EEG data

2019 ◽  
Vol 64 (6) ◽  
pp. 643-653
Author(s):  
Funda Kutlu Onay ◽  
Cemal Köse

Abstract The main idea of brain-computer interfaces (BCIs) is to facilitate the lives of patients having difficulties to move their muscles due to a disorder of their motor nervous systems but healthy cognitive functions. BCIs are usually electroencephalography (EEG)-based, and the success of the BCIs relies on the precision of signal preprocessing, detection of distinctive features, usage of suitable classifiers and selection of effective channels. In this study, a two-stage channel selection and local transformation-based feature extraction are proposed for the classification of motor imagery/movement tasks. In the first stage of the channel selection, the channels were combined according to the neurophysiological information about brain functions acquired from the literature, then averaged and a single channel was formed. In the second stage, selective channels were specified with the common spatial pattern-linear discriminant analysis (CSP-LDA)-based sequential channel removal. After the channel selection phase, the feature extraction was carried out with local transformation-based methods (LTBM): local centroid pattern (LCP), one-dimensional-local gradient pattern (1D-LGP), local neighborhood descriptive pattern (LNDP) and one-dimensional-local ternary pattern (1D-LTP). The distinctions and deficiencies of these methods were compared with other methods in the literature and the classification performances of the k-nearest neighbor (k-NN) and the support vector machines (SVM) were evaluated. As a result, the proposed methods yielded the highest average classification accuracies as 99.34%, 95.95%, 98.66% and 99.90% with the LCP, 1D-LGP, LNDP and 1D-LTP when using k-NN, respectively. The two-stage channel selection and 1D-LTP method showed promising results for recognition of motor tasks. The LTBM will contribute to the development of EEG-based BCIs with the advantages of high classification accuracy, easy implementation and low computational complexity.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Chu Kiong Loo ◽  
Andrews Samraj ◽  
Gin Chong Lee

A brain computer interface BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction, and classification operations. Feature extraction is crucial, as it has a substantial effect on the classification accuracy and speed. While fractal dimension has been successfully used in various domains to characterize data exhibiting fractal properties, its usage in motor imagery-based BCI has been more recent. In this study, commonly used fractal dimension estimation methods to characterize time series Katz's method, Higuchi's method, rescaled range method, and Renyi's entropy were evaluated for feature extraction in motor imagery-based BCI by conducting offline analyses of a two class motor imagery dataset. Different classifiers fuzzy k-nearest neighbours FKNN, support vector machine, and linear discriminant analysis were tested in combination with these methods to determine the methodology with the best performance. This methodology was then modified by implementing the time-dependent fractal dimension TDFD, differential fractal dimension, and differential signals methods to determine if the results could be further improved. Katz's method with FKNN resulted in the highest classification accuracy of 85%, and further improvements by 3% were achieved by implementing the TDFD method.



2021 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Umme Farhana ◽  
Mst Jannatul Ferdous

In brain computer interface (BCI) systems, the electroencephalography (EEG) signals give a pathway to a motor disabled person to communicate outside using the brain signal and a computer. EEG signals of different motor imagery (MI) movements can be differentiated using an effective classification technique to aid a motor disabled patient. The purpose of this paper is to classify two different types of MI movement tasks, movement of the left hand and movement of the right foot EEG signals accurately. For this purpose we have used a publicly available dataset. Since the feature extraction for classification is an important task, so we have used popular common spatial pattern (CSP) method for spatial feature extraction. Two different machine learning classifiers named support vector machine (SVM) and K-nearest neighbor (KNN) have been used to verify the proposed method. We got the highest average results 95.55%, 98.73% and 92.38% in case of SVM and 93.5%, 98.73% and 90.15% in case of KNN for classification accuracy, sensitivity, and specificity, respectively when a Butterworth band-pass filter passed through [10–30] Hz. On the other hand accuracy came to 89.4% in [10-30] Hz when applying CSP for feature extraction and fisher linear discriminant analysis (FLDA) for classification on this dataset earlier. Journal of Engineering Science 12(2), 2021, 67-77



2018 ◽  
Vol 61 (5) ◽  
pp. 1497-1504
Author(s):  
Zhenjie Wang ◽  
Ke Sun ◽  
Lihui Du ◽  
Jian Yuan ◽  
Kang Tu ◽  
...  

Abstract. In this study, computer vision was used for the identification and classification of fungi on moldy paddy. To develop a rapid and efficient method for the classification of common fungal species found in stored paddy, computer vision was used to acquire images of individual colonies of growing fungi for three consecutive days. After image processing, the color, shape, and texture features were acquired and used in a subsequent discriminant analysis. Both linear (i.e., linear discriminant analysis and partial least squares discriminant analysis) and nonlinear (i.e., random forest and support vector machine [SVM]) pattern recognition models were employed for the classification of fungal colonies, and the results were compared. The results indicate that when using all of the features for three consecutive days, the performance of the nonlinear tools was superior to that of the linear tools, especially in the case of the SVM models, which achieved an accuracy of 100% on the calibration sets and an accuracy of 93.2% to 97.6% on the prediction sets. After sequential selection of projection algorithm, ten common features were selected for building the classification models. The results showed that the SVM model achieved an overall accuracy of 95.6%, 98.3%, and 99.0% on the prediction sets on days 2, 3, and 4, respectively. This work demonstrated that computer vision with several features is suitable for the identification and classification of fungi on moldy paddy based on the form of the individual colonies at an early growth stage during paddy storage. Keywords: Classification, Computer vision, Fungal colony, Feature selection, SVM.



2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).



2013 ◽  
Vol 475-476 ◽  
pp. 374-378
Author(s):  
Xue Ming Zhai ◽  
Dong Ya Zhang ◽  
Yu Jia Zhai ◽  
Ruo Chen Li ◽  
De Wen Wang

Image feature extraction and classification is increasingly important in all sectors of the images system management. Aiming at the problems that applying Hu invariant moments to extract image feature computes large and too dimensions, this paper presented Harris corner invariant moments algorithm. This algorithm only calculates corner coordinates, so can reduce the corner matching dimensions. Combined with the SVM (Support Vector Machine) classification method, we conducted a classification for a large number of images, and the result shows that using this algorithm to extract invariant moments and classifying can achieve better classification accuracy.



Author(s):  
Esraa El Hariri ◽  
Nashwa El-Bendary ◽  
Aboul Ella Hassanien ◽  
Amr Badr

One of the prime factors in ensuring a consistent marketing of crops is product quality, and the process of determining ripeness stages is a very important issue in the industry of (fruits and vegetables) production, since ripeness is the main quality indicator from the customers' perspective. To ensure optimum yield of high quality products, an objective and accurate ripeness assessment of agricultural crops is important. This chapter discusses the problem of determining different ripeness stages of tomato and presents a content-based image classification approach to automate the ripeness assessment process of tomato via examining and classifying the different ripeness stages as a solution for this problem. It introduces a survey about resent research work related to monitoring and classification of maturity stages for fruits/vegetables and provides the core concepts of color features, SVM, and PCA algorithms. Then it describes the proposed approach for solving the problem of determining different ripeness stages of tomatoes. The proposed approach consists of three phases, namely pre-processing, feature extraction, and classification phase. The classification process depends totally on color features (colored histogram and color moments), since the surface color of a tomato is the most important characteristic to observe ripeness. This approach uses Principal Components Analysis (PCA) and Support Vector Machine (SVM) algorithms for feature extraction and classification, respectively.



Author(s):  
Ling Zou ◽  
Xinguang Wang ◽  
Guodong Shi ◽  
Zhenghua Ma

Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the sixth level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results.





Sign in / Sign up

Export Citation Format

Share Document