Automated Ripeness Assessment System of Tomatoes Using PCA and SVM Techniques

Author(s):  
Esraa El Hariri ◽  
Nashwa El-Bendary ◽  
Aboul Ella Hassanien ◽  
Amr Badr

One of the prime factors in ensuring a consistent marketing of crops is product quality, and the process of determining ripeness stages is a very important issue in the industry of (fruits and vegetables) production, since ripeness is the main quality indicator from the customers' perspective. To ensure optimum yield of high quality products, an objective and accurate ripeness assessment of agricultural crops is important. This chapter discusses the problem of determining different ripeness stages of tomato and presents a content-based image classification approach to automate the ripeness assessment process of tomato via examining and classifying the different ripeness stages as a solution for this problem. It introduces a survey about resent research work related to monitoring and classification of maturity stages for fruits/vegetables and provides the core concepts of color features, SVM, and PCA algorithms. Then it describes the proposed approach for solving the problem of determining different ripeness stages of tomatoes. The proposed approach consists of three phases, namely pre-processing, feature extraction, and classification phase. The classification process depends totally on color features (colored histogram and color moments), since the surface color of a tomato is the most important characteristic to observe ripeness. This approach uses Principal Components Analysis (PCA) and Support Vector Machine (SVM) algorithms for feature extraction and classification, respectively.

2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).


2013 ◽  
Vol 475-476 ◽  
pp. 374-378
Author(s):  
Xue Ming Zhai ◽  
Dong Ya Zhang ◽  
Yu Jia Zhai ◽  
Ruo Chen Li ◽  
De Wen Wang

Image feature extraction and classification is increasingly important in all sectors of the images system management. Aiming at the problems that applying Hu invariant moments to extract image feature computes large and too dimensions, this paper presented Harris corner invariant moments algorithm. This algorithm only calculates corner coordinates, so can reduce the corner matching dimensions. Combined with the SVM (Support Vector Machine) classification method, we conducted a classification for a large number of images, and the result shows that using this algorithm to extract invariant moments and classifying can achieve better classification accuracy.


Author(s):  
Rashmi K. Thakur ◽  
Manojkumar V. Deshpande

Sentiment analysis is one of the popular techniques gaining attention in recent times. Nowadays, people gain information on reviews of users regarding public transportation, movies, hotel reservation, etc., by utilizing the resources available, as they meet their needs. Hence, sentiment classification is an essential process employed to determine the positive and negative responses. This paper presents an approach for sentiment classification of train reviews using MapReduce model with the proposed Kernel Optimized-Support Vector Machine (KO-SVM) classifier. The MapReduce framework handles big data using a mapper, which performs feature extraction and reducer that classifies the review based on KO-SVM classification. The feature extraction process utilizes features that are classification-specific and SentiWordNet-based. KO-SVM adopts SVM for the classification, where the exponential kernel is replaced by an optimized kernel, finding the weights using a novel optimizer, Self-adaptive Lion Algorithm (SLA). In a comparative analysis, the performance of KO-SVM classifier is compared with SentiWordNet, NB, NN, and LSVM, using the evaluation metrics, specificity, sensitivity, and accuracy, with train review and movie review database. The proposed KO-SVM classifier could attain maximum sensitivity of 93.46% and 91.249% specificity of 74.485% and 70.018%; and accuracy of 84.341% and 79.611% respectively, for train review and movie review databases.


2008 ◽  
Vol 22 (5) ◽  
pp. 397-404 ◽  
Author(s):  
Cun-Gui Cheng ◽  
Yu-Mei Tian ◽  
Wen-Ying Jin

This paper introduces a new method for the early detection of colon cancer using a combination of feature extraction based on wavelets for Fourier Transform Infrared Spectroscopy (FTIR) and classification using the Support Vector Machine (SVM). The FTIR data collected from 36 normal SD rats, 60 1,2-DMH-induced SD rats, and 44 second generation rats of those induced rats was first preprocessed. Then, 12 feature variants were extracted using continuous wavelet analysis. The extracted feature variants were then inputted into the SVM for classification of normal, dysplasia, early carcinoma, and advanced carcinoma. Among the kernel functions the SVM used, the Poly and RBF kernels had the highest accuracy rates. The accuracy of the Poly kernel in normal, dysplasia, early carcinoma, and advanced carcinoma were 100, 97.5, 95% and 100% respectively. The accuracy of RBF kernel in normal, dysplasia, early carcinoma, and advanced carcinoma was 100, 95, 95% and 100% respectively. The results indicated that this method could effectively and easily diagnose colon cancer in its early stages.


2021 ◽  
Author(s):  
P. Sukhetha ◽  
N. Hemalatha ◽  
Raji Sukumar

Abstract Agriculture is one of the important parts of Indian economy. Agricultural field has more contribution towards growth and stability of the nation. Therefore, a current technologies and innovations can help in order to experiment new techniques and methods in the agricultural field. At Present Artificial Intelligence (AI) is one of the main, effective, and widely used technology. Especially, Deep Learning (DL) has numerous functions due to its capability to learn robust interpretations from images. Convolutional Neural Networks (CNN) is the major Deep Learning architecture for image classification. This paper is mainly focus on the deep learning techniques to classify Fruits and Vegetables, the model creation and implementation to identify Fruits and Vegetables on the fruit360 dataset. The models created are Support Vector Machine (SVM), K Nearest Neighbor (KNN), Decision Tree (DT), ResNet Pretrained Model, Convolutional Neural Network (CNN), Multilayer Perceptron (MLP). Among the different models ResNet pretrained Model performed the best with an accuracy of 95.83%.


As of now the detection and classification of lung cancer disease is one of the most tedious tasks in the field of medical area. In the diversified sector of medical industry usage of technology plays a very important role. Detection and diagnosis of the lung cancer at an early stage with more accuracy is the most challenging task. So, in this research article 400 set of images has been used for this experiment. Best feature extraction technique and best feature optimization technique has been analyzed on the basis of parameter minimum execution time with minimum error rate. Then finest selection of features leads to an optimal classification. In this context, one of the best classification algorithm the support vector machine has been proposed in this hybrid model for the binary classification. Further Feed forward back propagation neural network has been implemented with SVM. This proposed hybrid model reduces the complexity of the system on the basis of minimum execution time that is 1.94 sec. with minimum error rate 29.25. Further better classification accuracy 99.6507% has been achieved by using this unique hybrid model


2018 ◽  
Vol 1 (2) ◽  
pp. 46
Author(s):  
Tri Septianto ◽  
Endang Setyati ◽  
Joan Santoso

A higher level of image processing usually contains some kind of classification or recognition. Digit classification is an important subfield in handwritten recognition. Handwritten digits are characterized by large variations so template matching, in general, is inefficient and low in accuracy. In this paper, we propose the classification of the digit of the year of a relic inscription in the Kingdom of Majapahit using Support Vector Machine (SVM). This method is able to cope with very large feature dimensions and without reducing existing features extraction. While the method used for feature extraction using the Gray-Level Co-Occurrence Matrix (GLCM), special for texture analysis. This experiment is divided into 10 classification class, namely: class 1, 2, 3, 4, 5, 6, 7, 8, 9, and class 0. Each class is tested with 10 data so that the whole data testing are 100 data number year. The use of GLCM and SVM methods have obtained an average of classification results about 77 %.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2403
Author(s):  
Jakub Browarczyk ◽  
Adam Kurowski ◽  
Bozena Kostek

The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was performed on obtained signals. Welch’s method, autoregressive modeling, and discrete wavelet transform were used for feature extraction. Principal component analysis (PCA) was performed in order to reduce the dimensionality of feature vectors. k-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Neural Networks (NN) were employed for classification. Precision, recall, F1 score, as well as a discussion based on statistical analysis, were shown. The paper also contains code utilized in preprocessing and the main part of experiments.


Sign in / Sign up

Export Citation Format

Share Document