Age dependency of the diabetes effects on the iris recognition systems performance evaluation results

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammadreza Azimi ◽  
Seyed Ahmad Rasoulinejad ◽  
Andrzej Pacut

AbstractIn this paper, we attempt to answer the questions whether iris recognition task under the influence of diabetes would be more difficult and whether the effects of diabetes and individuals’ age are uncorrelated. We hypothesized that the health condition of volunteers plays an important role in the performance of the iris recognition system. To confirm the obtained results, we reported the distribution of usable area in each subgroup to have a more comprehensive analysis of diabetes effects. There is no conducted study to investigate for which age group (young or old) the diabetes effect is more acute on the biometric results. For this purpose, we created a new database containing 1,906 samples from 509 eyes. We applied the weighted adaptive Hough ellipsopolar transform technique and contrast-adjusted Hough transform for segmentation of iris texture, along with three different encoding algorithms. To test the hypothesis related to physiological aging effect, Welches’s t-test and Kolmogorov–Smirnov test have been used to study the age-dependency of diabetes mellitus influence on the reliability of our chosen iris recognition system. Our results give some general hints related to age effect on performance of biometric systems for people with diabetes.

Author(s):  
V. Jagan Naveen ◽  
K. Krishna Kishore ◽  
P. Rajesh Kumar

In the modern world, human recognition systems play an important role to   improve security by reducing chances of evasion. Human ear is used for person identification .In the Empirical study on research on human ear, 10000 images are taken to find the uniqueness of the ear. Ear based system is one of the few biometric systems which can provides stable characteristics over the age. In this paper, ear images are taken from mathematical analysis of images (AMI) ear data base and the analysis is done on ear pattern recognition based on the Expectation maximization algorithm and k means algorithm.  Pattern of ears affected with different types of noises are recognized based on Principle component analysis (PCA) algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1810
Author(s):  
Dat Tien Nguyen ◽  
Tuyen Danh Pham ◽  
Ganbayar Batchuluun ◽  
Kyoung Jun Noh ◽  
Kang Ryoung Park

Although face-based biometric recognition systems have been widely used in many applications, this type of recognition method is still vulnerable to presentation attacks, which use fake samples to deceive the recognition system. To overcome this problem, presentation attack detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and presentation attack face images before performing a recognition task, have been developed. However, the performance of PAD systems is limited and biased due to the lack of presentation attack images for training PAD systems. In this paper, we propose a method for artificially generating presentation attack face images by learning the characteristics of real and presentation attack images using a few captured images. As a result, our proposed method helps save time in collecting presentation attack samples for training PAD systems and possibly enhance the performance of PAD systems. Our study is the first attempt to generate PA face images for PAD system based on CycleGAN network, a deep-learning-based framework for image generation. In addition, we propose a new measurement method to evaluate the quality of generated PA images based on a face-PAD system. Through experiments with two public datasets (CASIA and Replay-mobile), we show that the generated face images can capture the characteristics of presentation attack images, making them usable as captured presentation attack samples for PAD system training.


2017 ◽  
Vol 9 (3) ◽  
pp. 53 ◽  
Author(s):  
Pardeep Sangwan ◽  
Saurabh Bhardwaj

<p>Speaker recognition systems are classified according to their database, feature extraction techniques and classification methods. It is analyzed that there is a much need to work upon all the dimensions of forensic speaker recognition systems from the very beginning phase of database collection to recognition phase. The present work provides a structured approach towards developing a robust speech database collection for efficient speaker recognition system. The database required for both systems is entirely different. The databases for biometric systems are readily available while databases for forensic speaker recognition system are scarce. The paper also presents several databases available for speaker recognition systems.</p><p> </p>


Author(s):  
XINHUA FENG ◽  
XIAOQING DING ◽  
YOUSHOU WU ◽  
PATRICK S. P. WANG

Classifier combination is an effective method to improve the recognition accuracy of a biometric system. It has been applied to many practical biometric systems and achieved excellent performance. However, there is little literature involving theoretical analysis on the effectiveness of classifier combination. In this paper, we investigate classifiers combined with the max and min rules. In particular, we compute the recognition performance of each combined classifier, and illustrate the condition in which the combined classifier outperforms the original unimodal classifier. We focus our study on personal verification, where the input pattern is classified into one of two categories, the genuine or the impostor. For simplicity, we further assume that the matching score produced by the original classifier follows a normal distribution and the outputs of different classifiers are independent and identically distributed. Randomly-generated data are employed to test our conclusion. The influence of finite samples is explored at the same time. Moreover, an iris recognition system, which adopts multiple snapshots to identify a subject, is introduced as a practical application of the above discussions.


Author(s):  
B. H. Shekar ◽  
S. S. Bhat ◽  
A. Maysuradze

<p><strong>Abstract.</strong> Iris code matching is an important stage of iris biometric systems which compares the input iris code with stored patterns of enrolled iris codes and classifies the code into one of classes so that, the claim is accepted or rejected. Several classifier based approaches are proposed by the researchers to improve the recognition accuracy. In this paper, we discuss the factors affecting an iris classifier’s performance and we propose a reliability index for iris matching techniques to quantitatively measure the extent of system reliability, based on false acceptance rate and false rejection rates using Monte Carlo Simulation. Experiments are carried out on benchmark databases such as, IITD, MMU v-2, CASIA v-4 Distance and UBIRIS v.2.</p>


2014 ◽  
Vol 672-674 ◽  
pp. 1985-1990 ◽  
Author(s):  
Wang Fang

For an ordinary individual biometric systems and technology, such as fingerprint recognition, palm recognition, face recognition or iris recognition, or late detection from a single object has crippled so that they have the characteristics of unity and limitations, this paper combining fingerprint and hand palm pattern recognition technology, taking into account the complexity of the image pattern and diversity, we propose a dual recognition algorithm, which greatly makes up for lack of a single fingerprint or palm print recognition method. The technology used in library management system than traditional card-borrowed books have higher efficiency and save manpower and material resources. After the experimental statistics, and achieved the desired results, not only improve the recognition efficiency, but also to ensure the accuracy of the recognition performance.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
Nasharuddin Zainal ◽  
Abduljalil Radman ◽  
Mahamod Ismail ◽  
Md Jan Nordin

Iris recognition has been regarded as one of the most reliable biometric systems over the past years. Previous studies have shown that the performance of iris recognition systems highly dependent on the performance of their segmentation algorithms. Iris segmentation is the process to isolate the iris region from the surrounded structures of the eye image. However, several iris segmentation algorithms have been developed in the literature, but their segmentation and recognition accuracies drastically degrade with non-ideal iris images acquired in less constrained conditions. Thus, it is crucial to develop a new iris segmentation method to improve iris recognition using non-ideal images. Hence, the objective of this paper is an iris segmentation method on the basis of optimization to isolate the iris region from non-ideal iris images such those affected by reflections, blurred boundaries, eyelids occlusion, and gaze-deviation. Experimental results on the off axis/angle West Virginia University (WVU) iris database demonstrated the superiority of the developed method over state-of-the-art iris segmentation methods considered in this paper. The performance of an iris recognition algorithm based on the developed iris segmentation method was observed to be improved.  


2019 ◽  
Vol 8 (3) ◽  
pp. 2761-2767

Iris recognition system has gained prominent focus because of its uniqueness, stability over time. But the recognition level of single biometric based recognition systems is greatly affected by environmental conditions, physiological deficiency. Multi-biometric systems diminish this problem with the fusion of features collected from various traits or samples of the same trait, a single trait by employing multiple algorithms or multiple instances. To gain the advantages of multi-biometric systems in iris recognition, a Multi-algorithmic iris recognition system has been proposed where Texture features from iris are extracted by using 2D-Log Gabor filter and Phase features are extracted by Haar Wavelet; And these features can be integrated at various levels like Decision, Rank, Score, feature, and pixel. Even though the feature level fusion contains rich information about biometric samples when compared to remaining fusion levels; it involves mapping complexity, high dimensional feature space. To gain advantage of feature level fusion in iris recognition and to overcome the problem of resulted high dimensional feature space, Genetic Algorithm (GA) based reduction scheme, Principal Component Analysis (PCA) reduction strategy and a hybrid reduction scheme which is a combination of PCA and GA have been applied to reduce the resulted feature space. The performance of these reduction strategies have evaluated on CASIA iris database, IIT Delhi iris database using Machine Learning approaches. The results have shown that the feature space has dramatically reduced while keeping recognition accuracy and also revealed that space and time requirements have significantly decreased after employing feature reduction schemes.


Biometric Systems are well-known security systems that can be used anywhere for authentication, authorization or any kind of security verifications. In biometric systems, the samples are trained first and then it can be used for testing in long runs. Many recent researches have shown that a biometric system may fail or get compromised because of the aging of the biometric templates. The fact that temporal duration affects the performance of the biometric system has shattered the belief that iris does not change over lifetime. This is also possible in the case of iris. So, the main focus of this work is to analyze the effect of aging and also to propose a new system that can deal with template aging. We have proposed a new iris recognition system with an image enhancement mechanism and different feature extraction mechanisms. In this work, three different features are extracted, which are then fused to be used as one. The full system is trained on a dataset of 2500 samples for the year 2008 and testing is done in three different phases (i) No-Lapse, (ii) 1-Year Lapse and (iii) 2-Year Lapse. A portion of the ND-Iris-Template-Aging dataset [11] is used with a period of three years lapse. Results show that the performance of the hybrid classifier AHyBrK [17] is improved as compared to KNN and ANN and the effect of aging in terms of degraded performance is clear. The performance of this system is measured in terms of False Rejection Rate, Error Rate, and Accuracy. The overall performance of AHyBrK is 51.04% and 52.98% better than KNN and ANN respectively in terms of False Rejection Rate and Error Rate whereas the accuracy of this proposed system is also improved by 5.52% and 6.04% as compared to KNN and ANN respectively. This proposed system also achieved high accuracy for all the test phases.


2020 ◽  
Vol 9 (6) ◽  
pp. 2358-2363
Author(s):  
Shahrizan Jamaludin ◽  
Nasharuddin Zainal ◽  
W. Mimi Diyana W. Zaki

Iris recognition has been around for many years due to an extensive research on the uniqueness of human iris. It is well known that the iris is not similar to each other which means every human in the planet has their own iris pattern and cannot be shared. One of the main issues in iris recognition is iris segmentation. One element that can reduce the accuracy of iris segmentation is the presence of specular reflection. Another issue is the speed of specular reflection removal since the iris recognition system needs to process a lot of irises. In this paper, a specular reflection removal method was proposed to achieve a fast and accurate specular reflection removal. Some modifications were implemented on the existing pixels properties method. Based on the results, the proposed method achieved the fastest execution time, the highest segmentation accuracy and the highest SSIM compared to the other methods. This proves that the proposed method is fast and accurate to be implemented in the iris recognition systems.


Sign in / Sign up

Export Citation Format

Share Document