scholarly journals Eigenproblems in nanomechanics

2015 ◽  
Vol 63 (3) ◽  
pp. 819-825
Author(s):  
A. Muc ◽  
A. Banaś

Abstract The paper is semitutorial in nature to make it accessible to readers from a broad range of disciplines. Our particular focus is on cataloging the known problems in nanomechanics as eigenproblems. Physical insights obtained from both analytical results and numerical simulations of various researchers (including our own) are also discussed. The paper is organized in two broad sections. In the second section the attention is focused on the analysis of quantum dots. The analysis of electronic properties of strained semiconductor structures is reduced here to the solution of a linear boundary value problem (the classical Helmholtz wave equation). In Sec 3, we provide, intermixed with a literature review, details on various methods and issues in calculation free vibrations/loss of stability for carbon nanotubes. The effect of various parameters associated with the material anisotropy are addressed. Typically classical continuum mechanics, which is intrinsically size independent, is employed for calculations.

Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 794
Author(s):  
Cullen Horstmann ◽  
Victoria Davenport ◽  
Min Zhang ◽  
Alyse Peters ◽  
Kyoungtae Kim

Next-generation sequencing (NGS) technology has revolutionized sequence-based research. In recent years, high-throughput sequencing has become the method of choice in studying the toxicity of chemical agents through observing and measuring changes in transcript levels. Engineered nanomaterial (ENM)-toxicity has become a major field of research and has adopted microarray and newer RNA-Seq methods. Recently, nanotechnology has become a promising tool in the diagnosis and treatment of several diseases in humans. However, due to their high stability, they are likely capable of remaining in the body and environment for long periods of time. Their mechanisms of toxicity and long-lasting effects on our health is still poorly understood. This review explores the effects of three ENMs including carbon nanotubes (CNTs), quantum dots (QDs), and Ag nanoparticles (AgNPs) by cross examining publications on transcriptomic changes induced by these nanomaterials.


Author(s):  
Yucheng Ou ◽  
Gangqiang Zhu ◽  
Fei Rao ◽  
Jianzhi Gao ◽  
Jun Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document