scholarly journals Image processing-based mTICI grading after endovascular treatment for acute ischemic stroke

2021 ◽  
Vol 7 (2) ◽  
pp. 235-238
Author(s):  
Muhannad Sabieleish ◽  
Maximilian Thormann ◽  
Jonathan Metzler ◽  
Axel Boese ◽  
Michael Friebe ◽  
...  

Abstract Introduction : The grade of reperfusion after endovascular treatment of ischemic stroke e.g. mechanical thrombectomy is determined based on the mTICI score. The mTICI score shows significant interrater variability; it is usually biased towards better reperfusion results if selfassessed by the operator. We therefore developed a semiautomated image processing technique for assessing and evaluating the degree of reperfusion independently, resulting in a more objective mTICI score. Methods: Fifty angiography datasets of patients who were treated with mechanical thrombectomy for middle cerebral artery (MCA) occlusion were selected from our database. Image datasets were standardized by adjustment of field of view and orientation. Based on pixel intensity features, the internal carotid artery (ICA) curve was detected automatically and used as a starting point for identifying the target downstream territory (TDT) of the MCA on the DSA series. Furthermore, a grid with predefined dimensions was used to divide the TDT into checkzones and be classified as perfused or unperfused. Results: The algorithm detected the TDT and classified each zone of the grid as perfused or unperfused. Lastly, the percentage of the perfused area in the TDT was calculated for each patient and compared to the grading of experienced clinical users. Conclusion: A semi-automatic image-processing workflow was developed to evaluate perfusion rate based on angiographic images. The approach can be used for the objective calculation of the mTICI score. The semi-automatic grading is currently feasible for MCA occlusion but can be extended for other brain territories. The work shows a starting point for a machine learning approach to achieve a fully automated system that can evaluate and give an accurate mTICI score to become a common AI-based grading standard in the coming near future.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Kusworo Adi ◽  
Sri Pujiyanto ◽  
Oky Dwi Nurhayati ◽  
Adi Pamungkas

Beef is one of the animal food products that have high nutrition because it contains carbohydrates, proteins, fats, vitamins, and minerals. Therefore, the quality of beef should be maintained so that consumers get good beef quality. Determination of beef quality is commonly conducted visually by comparing the actual beef and reference pictures of each beef class. This process presents weaknesses, as it is subjective in nature and takes a considerable amount of time. Therefore, an automated system based on image processing that is capable of determining beef quality is required. This research aims to develop an image segmentation method by processing digital images. The system designed consists of image acquisition processes with varied distance, resolution, and angle. Image segmentation is done to separate the images of fat and meat using the Otsu thresholding method. Classification was carried out using the decision tree algorithm and the best accuracies were obtained at 90% for training and 84% for testing. Once developed, this system is then embedded into the android programming. Results show that the image processing technique is capable of proper marbling score identification.


Author(s):  
Worawut Yimyam ◽  
Mahasak Ketcham

Grading devices are expensive causing budget waste, in addition some are difficult to use. Therefore, an objective test grading system via Android mobile phone was developed to save cost and time in grading. The system uses image processing technique developed by Java. A camera on a mobile phone was used to capture the edge of answers and an equation of geometric simulation of digital camera sensor was applied to identify answers selected from calculation of pixel intensity in real time. The objective test grading system via Android mobile phone can work effectively and accurately more than 95%.


2019 ◽  
Vol 20 (1) ◽  
pp. 12-21
Author(s):  
Marco Guerrieri ◽  
Giuseppe Parla

Abstract Nowadays safety in railways is mostly achieved by automated system technologies such as ERTMS/ETCS. Nevertheless, on local railways (suburban and regional lines) several tasks still depend on the choices and actions of a human crew. With the aim to improve safety in such type of railways, this research proposes a system for the automatic detection and recognition of railway signs by means of the digital image processing technique. First field applications, carried out on the Italian railway network, show that the proposed system is very accurate (the percentage of correctly detected railway signs is about 97%), even at high train speeds.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


2012 ◽  
Vol 19 (5) ◽  
pp. 1168-1174
Author(s):  
Li-Zhou ZHANG ◽  
Xiao-Yu HOU ◽  
Yu-Ming ZHANG ◽  
Hong-Jun LI ◽  
Yi-Song CHENG ◽  
...  

2010 ◽  
Vol 18 (6) ◽  
pp. 1340-1344
Author(s):  
Li-Zhou ZHANG ◽  
Dian-Wu WANG ◽  
Yu-Ming ZHANG ◽  
Yi-Song CHENG ◽  
Hong-Jun LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document