scholarly journals Generalised Image Processing Method for Quantitative Analysis of Nucleus, Cell and Focal Adhesion Clusters

2021 ◽  
Vol 7 (2) ◽  
pp. 558-561
Author(s):  
Rajasree Padmakumari Hemachandran Nair ◽  
Rohit Menon ◽  
Ralf Kemkemer

Abstract Focal adhesion clusters (FAC) are dynamic and complex structures that help cells to sense physicochemical properties of their environment. Research in biomaterials, cell adhesion or cell migration often involves the visualization of FAC by fluorescence staining and microscopy, which necessitates quantitative analysis of FAC and other cell features in microscopy images using image processing. Fluorescence microscopy images of human umbilical vein endothelial cells (HUVEC) obtained at 63x magnification were quantitatively analysed using ImageJ software. A generalised algorithm for selective segmentation and morphological analysis of FAC, nucleus and cell morphology is implemented. Further, a method for discrimination of FAC near the nucleus and around the periphery is implemented using masks. Our algorithm is able to effectively quantify different morphological characteristics of cell components and shows a high sensitivity and specificity while providing a modular software implementation.

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xiaoqian Fang ◽  
Dong H Kim ◽  
Teresa Santiago-Sim

Introduction: An intracranial aneurysm (IA) is a weak spot in cerebral blood vessel wall that can lead to its abnormal bulging. Previously, we reported that mutations in THSD1 , encoding thrombospondin type-1 domain-containing protein 1, are associated with IA in a subset of patients. THSD1 is a transmembrane molecule with a thrombospondin type-1 repeat (TSR). Proteins with TSR domain have been implicated in a variety of processes including regulation of matrix organization, cell adhesion and migration. We have shown that in mouse brain Thsd1 is expressed in endothelial cells. Hypothesis: THSD1 plays an important role in maintaining the integrity of the endothelium by promoting adhesion of endothelial cells to the underlying basement membrane. Methods: Human umbilical vein endothelial cells are used to investigate the role of THSD1 in vitro . THSD1 expression was knocked-down by RNA interference. Cell adhesion assay was done on collagen I-coated plates and focal adhesion formation was visualized using immunofluorescence by paxillin and phosphorylated focal adhesion kinase (pFAK) staining. THSD1 re-expression is accomplished by transfection with a pCR3.1-THSD1-encoding plasmid. Results: Knockdown of THSD1 caused striking change in cell morphology and size. Compared to control siRNA-treated cells that exhibited typical cobblestone morphology, THSD1 knockdown cells were narrow and elongated, and were significantly smaller ( p <0.01). Cell adherence to collagen I-coated plates was also attenuated in THSD1 knockdown cells ( p <0.01). Consistent with this finding is the observation that the number and size of focal adhesions, based on paxillin and pFAK staining, were significantly reduced after THSD1 knockdown ( p <0.01). These defects in cell adhesion and focal adhesion formation were rescued by re-expression of wild type THSD1 ( p <0.05). In contrast, initial studies indicate that expression of mutated versions of THSD1 as seen in human patients (L5F, R450*, E466G, P639L) could not restore cell adhesion and focal adhesion formation to wild type levels. Conclusions: Our studies provide evidence for a role of THSD1 and THSD1 mutations in endothelial cell adhesion and suggest a possible mechanism underlying THSD1 -mediated aneurysm disease.


2014 ◽  
Vol 805 ◽  
pp. 236-241 ◽  
Author(s):  
Fernando Henrique da Costa ◽  
Cristina Sayuri Fukugauchi ◽  
Marcelo dos Santos Pereira

In the second half of the last century, the automobile industries were affected from the petroleum crisis caused mainly by the wars in the Middle East. These crises led the automakers reconsider their vehicles. One of the most important events after that was the adoption of new steels by the industry. One example is the TRIP steels (Transformation-induced plasticity). In this work, a specimen of TRIP steels was etched using LePera reagent. The obtained images were analyzed using digital processing. Using the ImageJ software the methods threshold and watershed were studied. The methods were compared: the morphological characteristics and volumetric fraction of the retained austenite and martensite phases were analyzed. The results showed that the threshold led to a higher number of identified grains with lower mean area and total area fraction than the watershed method.


2011 ◽  
Vol 29 ◽  
pp. e94
Author(s):  
K. B. Biswas ◽  
A. H.M.N. Nabi ◽  
Y. Arai ◽  
T. Nakagawa ◽  
A. Ebihara ◽  
...  

1996 ◽  
Vol 7 (8) ◽  
pp. 1209-1224 ◽  
Author(s):  
A P Gilmore ◽  
L H Romer

It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.


Author(s):  
Yu Zhang ◽  
Andreas Schedle ◽  
Michael Matejka ◽  
Xiaohui Rausch-Fan ◽  
Oleh Andrukhov

AbstractThe interaction of osteoblasts and endothelial cells plays a pivotal role in osteogenesis. This interaction has been extensively studied using their direct co-culture in vitro. However, co-culture experiments require clear discrimination between the two different cell types in the mixture, but this was rarely achieved. This study is the first to use fluorescence-activated cell sorting (FACS) for the separation and quantitative analysis of the proliferation and differentiation of MG-63 cells grown in direct co-culture with human umbilical vein endothelial cells (HUVECs). The cells of the MG-63 cell line have properties consistent with the characteristics of normal osteoblasts. We labeled HUVECs with fluorescent antibody against CD31 and used FACS to measure the proportions of each cell type and to separate them based on their different fluorescence intensities. The rate of proliferation of the MG-63 cells was estimated based on a count of the total viable cells and the proportion of MG-63 cells in the mixture. The mRNA expression levels of the osteoblast differentiation markers alkaline phosphatase (ALP), collagen type 1 (Coll-1) and osteocalcin (OC) in the MG-63 cells were measured via real-time PCR after the separation via FACS. We found that HUVECs stimulated the proliferation of the MG-63 cells after 72 h of co-culture, and inhibited it after 120 h of co-culture. The mRNA expression levels of ALP and Coll-1 significantly increased, whereas that of OC significantly decreased in MG-63 after co-culture with HUVECs. Using FACS for the quantitative analysis of the proliferation and differentiation of osteoblasts directly interacting with endothelial cells could have merit for further co-culture research.


Sign in / Sign up

Export Citation Format

Share Document