scholarly journals In vitro evaluation of lactic acid bacteria with probiotic activity isolated from local pickled leaf mustard from Wuwei in Anhui as substitutes for chemical synthetic additives

2021 ◽  
Vol 19 (1) ◽  
pp. 755-771
Author(s):  
Changjun Wu ◽  
Xiaopei Lin ◽  
Lin Tong ◽  
Chenwei Dai ◽  
Han Lv ◽  
...  

Abstract The extensive abuse of chemical synthetic additives has raised increased attention to food safety. As substitutes, probiotics play an important role in human health as they balance the intestinal microbes in host. This study was aimed to isolate and evaluate the potential probiotic activities of lactic acid bacteria (LAB) from a local pickled leaf mustard (PLM) from Wuwei city in Anhui province through in vitro experiments. A total of 17 LAB strains were obtained as probiotics. All the isolates were sensitive to chloramphenicol, tetracycline, erythromycin, and doxycycline but exhibited resistance to antibiotics (e.g., streptomycin, kanamycin, gentamicin, and vancomycin). Out of the 17 strains, 9 were sensitive to most of the antibiotics and had no cytotoxic activity on human colorectal adenocarcinoma cell line (HT-29) cells. The isolated AWP4 exhibited antibacterial activity against four indicator pathogen strains (ATCC8099: Escherichia coli, ATCC6538: Staphylococcus aureus, ATCC9120: Salmonella enteric, and BNCC192105: Shigella sonnei). Based on the phylogenetic analysis of the 16S rRNA gene, AWP4 belonged to Lactiplantibacillus plantarum. This study indicated that the Wuwei local PLM could be a potential resource to isolate beneficial LAB as probiotics. The data provide theoretical guidance for further animal experiments to estimate the probiotic effect and safety of Lpb. plantarum AWP4 in vivo.

2020 ◽  
Vol 8 (3) ◽  
pp. 393 ◽  
Author(s):  
Ana Pinto ◽  
Joana Barbosa ◽  
Helena Albano ◽  
Joana Isidro ◽  
Paula Teixeira

Probiotics are living microorganisms used as nutritional additives that confer health benefits on the host. Their use in food products is very attractive, especially if they could also inhibit important foodborne pathogens. In this study, antimicrobial activity against several foodborne pathogens was screened for 280 lactic acid bacteria (LAB) isolated from different food products and the probiotic characteristics of bacteriocinogenic isolates were evaluated. Seven out of 280 LAB isolates were selected due to their bacteriocinogenic properties and identified by 16S rRNA gene sequence analysis as Pediococcus pentosaceus (n = 6) and Lactobacillus plantarum (n = 1). Virulence factors and antibiotic resistances were not detected for any of the isolates. Except for L. plantarum R23, all the isolates were able to survive through the simulated gastrointestinal tract conditions. Only P. pentosaceus CFF4 was able to adhere to Caco-2 cells after the simulated gastrointestinal tract passage. In conclusion, even though in vivo studies should be performed, P. pentosaceus CFF4, which was also able to inhibit the growth of foodborne pathogens in vitro, seems to be a potential probiotic to be used in the food industry.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


2016 ◽  
Vol 62 (6) ◽  
pp. 514-524 ◽  
Author(s):  
Sandra Rayén Quilodrán-Vega ◽  
Julio Villena ◽  
José Valdebenito ◽  
María José Salas ◽  
Cristian Parra ◽  
...  

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.


2021 ◽  
Vol 62 (5) ◽  
pp. 148-156
Author(s):  
Kenji Oonaka ◽  
Naoki Kobayashi ◽  
Yosuke Uchiyama ◽  
Mioko Honda ◽  
Shiro Miyake ◽  
...  

2014 ◽  
Vol 41 (2) ◽  
pp. 570-580 ◽  
Author(s):  
Estefanía Muñoz-Atienza ◽  
Carlos Araújo ◽  
Susana Magadán ◽  
Pablo E. Hernández ◽  
Carmen Herranz ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1496
Author(s):  
Ji-Hyeon Jeon ◽  
Jaehyeok Lee ◽  
Jin-Hyang Park ◽  
Chul-Haeng Lee ◽  
Min-Koo Choi ◽  
...  

This study aims to investigate the effect of lactic acid bacteria (LAB) on in vitro and in vivo metabolism and the pharmacokinetics of ginsenosides in mice. When the in vitro fermentation test of RGE with LAB was carried out, protopanaxadiol (PPD) and protopanaxadiol (PPD), which are final metabolites of ginsenosides but not contained in RGE, were greatly increased. Compound K (CK), ginsenoside Rh1 (GRh1), and GRg3 also increased by about 30%. Other ginsenosides with a sugar number of more than 2 showed a gradual decrease by fermentation with LAB for 7 days, suggesting the involvement of LAB in the deglycosylation of ginsenosides. Incubation of single ginsenoside with LAB produced GRg3, CK, and PPD with the highest formation rate and GRd, GRh2, and GF with the lower rate among PPD-type ginsenosides. Among PPT-type ginsenosides, GRh1 and PPT had the highest formation rate. The amoxicillin pretreatment (20 mg/kg/day, twice a day for 3 days) resulted in a significant decrease in the fecal recovery of CK, PPD, and PPT through the blockade of deglycosylation of ginsenosides after single oral administrations of RGE (2 g/kg) in mice. The plasma concentrations of CK, PPD, and PPT were not detectable without change in GRb1, GRb2, and GRc in this group. LAB supplementation (1 billion CFU/2 g/kg/day for 1 week) after the amoxicillin treatment in mice restored the ginsenoside metabolism and the plasma concentrations of ginsenosides to the control level. In conclusion, the alterations in the gut microbiota environment could change the ginsenoside metabolism and plasma concentrations of ginsenosides. Therefore, the supplementation of LAB with oral administrations of RGE would help increase plasma concentrations of deglycosylated ginsenosides such as CK, PPD, and PPT.


Author(s):  
Pamela Mancha-Agresti ◽  
Mariana Martins Drumond ◽  
Fillipe Luiz Rosa do Carmo ◽  
Monica Morais Santos ◽  
Janete Soares Coelho dos Santos ◽  
...  

2011 ◽  
Vol 51 (7) ◽  
pp. 597 ◽  
Author(s):  
M. B. Ghali ◽  
P. T. Scott ◽  
G. A. Alhadrami ◽  
R. A. M. Al Jassim

The camel is emerging as a new and important animal in the Australian livestock industry. However, little is known regarding the microbial ecosystem of the gastrointestinal tract of this ruminant-like animal. This study was carried out to determine the diversity of lactic acid-producing and lactic acid-utilising bacteria in the foregut of the feral camel (Camelus dromedarius) in Australia. Putative lactic acid bacteria were isolated from the foregut contents of camels by culturing on De Man, Rogosa, Sharpe and lactic acid media. Identification of representative isolates was based on the analysis of 16S rRNA gene sequences. Fermentation end products of glucose (i.e. volatile fatty acids and lactate) were also measured in vitro. The key predominant bacteria identified in this study were closely related to Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Lachnospira pectinoschiza and Prevotella ruminicola. The main L-lactate producers were those isolates closely related to S. bovis, S. ruminantium and Lactococcus garvieae, while the efficient lactate utilisers were S. ruminantium-related isolates. D-lactate was produced by isolates closely related to either L. pectinoschiza or S. ruminantium. The predominant bacteria isolated and characterised in this study are identical and/or closely related to those typically found in true ruminants (e.g. S. ruminantium, B. fibrisolvens, S. bovis). In addition, some of the bacteria isolated represent novel species of Lachnospira and Clostridium in the context of lactic acid bacteria from a large herbivorous host. The results from this study have contributed to our understanding and provide opportunities to reduce foregut acidosis in the camel.


2009 ◽  
Vol 75 (10) ◽  
pp. 3146-3152 ◽  
Author(s):  
Niamh Toomey ◽  
�ine Monaghan ◽  
S�amus Fanning ◽  
Declan Bolton

ABSTRACT Three wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model. All transconjugants were confirmed by Etest, PCR, pulsed-field gel electrophoresis, and Southern blotting. The in vitro filter mating method demonstrated high transfer frequencies between all LAB pairs, ranging from 1.8 � 10−5 to 2.2 � 10−2 transconjugants per recipient. Transconjugants were detected in the rumen model for all mating pairs tested; however, the frequencies of transfer were low and inconsistent over 48 h (ranging from 1.0 � 10−9 to 8.0 � 10−6 transconjugants per recipient). The plant model provided an environment that appeared to promote comparatively higher transfer frequencies between all LAB pairs tested over the 9-day period (transfer frequencies ranged from 4.7 � 10−4 to 3.9 � 10−1 transconjugants per recipient). In our test models, dairy cultures of LAB can act as a source of mobile genetic elements encoding antibiotic resistance that can spread to other LAB. This observation could have food safety and public health implications.


Author(s):  
Maira Urazova ◽  
◽  
Kunsulu Zakarya ◽  
Zinigul Sarmurzina ◽  
Gulmira Bissenova ◽  
...  

Currently, in Kazakhstan, chemical agents and antibiotics are widely used for treatment and prevention of fish diseases at fish farms. The use of probiotics as an alternative to antibiotics can help reduce the spread of antibiotic resistance in this area. The aim of the present study was to isolate the intestinal lactic acid bacteria of wintering carps. We assume that such bacteria can have more adaptive properties and can be used as probiotics for growing carp juveniles at fish farms. A probiotic characteristic of 22 lactic acid bacteria isolated from Common carp intestines was studied. Universal primers were used to determine the sequence of 16S rRNA gene fragments of lactic acid bacteria (LAB). Phylogenetic relationships of the isolates were estimated using the neighbor-joining (NJ) method in Mega 6,0. All identified isolates can grow in temperature range from 10° C to 37° C and in presence of bile salt. The isolated bacteria were screened for antibacterial activity, resistance to bile, resistance to antibiotics and growth at low temperatures. All isolates were tested in vitro for their ability to inhibit the growth of Shewanella xiamenensis, Pseudomonas taiwanensis, Ps. aeruginosa and Aeromonas punctata. As a result, 7 isolates with strong antagonistic activity were selected. 16S rDNA gene sequencing identified 4 isolates as Lactobacillus fermentum, 2 - as L. casei/paracasei and 1 - as Pediococcus pentosaceus. Antibiotic resistance profile of selected strains was studied, too. This study is the first attempt for Kazakhstan to isolate and study the representatives of the normal intestinal microflora of commercial fish species. Selective strains could be potential probiotics for freshwater aquaculture practices in Kazakhstan.


Sign in / Sign up

Export Citation Format

Share Document