scholarly journals Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Kadir Mercan ◽  
Çiğdem Demir ◽  
Ömer Civalek

AbstractIn the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love’s first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

2016 ◽  
Vol 32 (4) ◽  
pp. 473-478
Author(s):  
C.-C. Hong

AbstractThe generalized differential quadrature (GDQ) method is used to investigate the transient response of magnetostrictive functionally graded material (FGM) circular cylindrical shells. The effects of control gain value, thermal load temperature and power-law index on transient responses of dominant normal displacement and thermal stress are analyzed. With velocity feedback and suitable product values of coil constant by control gain in the magnetostrictive FGM shells can reduce the transient amplitude of displacement into a smaller value.


Author(s):  
M N Naeem ◽  
S H Arshad ◽  
C B Sharma

In this article vibration frequencies of functionally graded circular cylindrical shells are analysed and studied using the Ritz formulation. Since closed-form solutions are limited to simple cases, an approximate method is employed to solve the shell problem, and numerical evaluation is carried out using a direct variational method. Axial modal dependence is chosen in terms of Ritz polynomials to ascertain a rapid convergence of the method. Sanders and Budiansky's thin shell theory is utilized for strain—displacement and curvature—displacement relations. Functionally graded material characteristics for the constituent materials are distributed in accordance with a volume fraction law. Influence of boundary conditions and volume fraction exponents on the vibration frequency spectra is analysed. The present results are compared with some previous works and excellent agreement is found.


2013 ◽  
Vol 353-356 ◽  
pp. 3236-3242
Author(s):  
Ze Qing Wan ◽  
Shi Rong Li

Based on the Loves shell theory, relationship between bending solutions of functionally graded materials (FGM) and homogenous circular cylindrical shells was studied. By comparing the displacement-type governing equations for axially symmetrically bending of FGM and homogenous circular cylindrical shells, an analogous transform relation between the deflections of FGM circular cylindrical shell and those of homogenous one was obtained. By giving the material properties of FGM circular cylindrical shell changing as continuous functions in the thickness direction, the corresponding transition factor between the solutions of the two kind circular cylindrical shells were derived, which reflect the non-uniform properties of the functionally graded material circular cylindrical shell. Numerical example shows that the numerical solutions of the maximum of non-dimensional deflections are almost in agreement with the transformational solutions whennequals approximately 5, wherenis the volume fraction index. As a result, solutions for axially symmetrically bending of a non-homogenous circular cylindrical shell can be reduced to that of a homogenous one and the calculation of the transformation factors.


2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


2012 ◽  
Vol 34 (3) ◽  
pp. 139-156 ◽  
Author(s):  
Dao Van Dung ◽  
Le Kha Hoa

This paper presents an analytical approach to analyze the nonlinear stability of thin closed circular cylindrical shells under axial compression with material properties varying smoothly along the thickness in the power and exponential distribution laws. Equilibrium and compatibility equations are obtained by using Donnel shell theory taking into account the geometrical nonlinearity in von Karman and initial geometrical imperfection.  Equations to find the critical load and the load-deflection curve are established by Galerkin's method. Effects of buckling modes, of imperfection, of dimensional parameters and of volume fraction indexes to buckling loads and postbuckling load-deflection curves of cylindrical shells are investigated. In case of perfect cylindrical shell, the present results coincide with the ones of the paper  [13] which were solved by Ritz energy method.


2017 ◽  
Vol 35 (3) ◽  
pp. 606-617 ◽  
Author(s):  
Hossein Nourmohammadi ◽  
Bashir Behjat

AbstractIn this article, the static response of the functionally graded piezoelectric (FGP) plates with piezoelectric layers (sandwich FGPM) is studied based on the first order shear deformation plate theory. The plate is under mechanical, electrical and thermal loadings and finite element method is employed to obtain the solution of the equation. All mechanical, thermal and piezoelectric properties, except Poisson ratio, obey the power law distribution through the thickness. By solving the governing equation, optimum value of power law index is investigated in each type of loading. The effects of different volume fraction index, layer arrangements, various boundary conditions and different loading types, are studied on the deflection of FGPM plate. It is inferred that, the correlations between the deflection, power law index and layer arrangement are completely different in the mechanical and thermal loading and the optimum value of the power law index should be selected in each case separately. This optimum values can be used as a design criterion to build a reliable sensors and actuators in thermal environments.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
F. Ebrahimi ◽  
H.A. Sepiani

In this study, a formulation for the free vibration and buckling of cylindrical shells made of functionally graded material (FGM) subjected to combined static and periodic axial loadings are presented. The properties are temperature dependent and graded in the thickness direction according to a volume fraction power law distribution. The analysis is based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on vibration and buckling of functionally graded cylindrical shells is dependent on the material composition, the temperature environment, the amplitude of static load, the deformation mode, and the shell geometry parameters.


Author(s):  
Farhad Sabri ◽  
Aouni A. Lakis

In this work, a hybrid finite element formulation is presented to predict the flutter boundaries of circular cylindrical shells made of functionally graded materials. The development is based on the combination of linear Sanders thin shell theory and classic finite element method. Material properties are temperature dependent, and graded in the shell thickness direction according to a simple power law distribution in terms of volume fractions of constituents. The temperature field is assumed to be uniform over the shell surface and along the shell thickness. First order piston theory is applied to account for supersonic aerodynamic pressure. The effects of temperature rise and shell internal pressure on the flutter boundaries of FG circular cylindrical shell for different values of power law index are investigated. The present study shows efficient and reliable results that can be applied to the aeroelastic design and analysis of shells of revolution in aerospace vehicles.


2012 ◽  
Vol 12 (02) ◽  
pp. 311-335 ◽  
Author(s):  
X. Q. HE ◽  
L. LI ◽  
S. KITIPORNCHAI ◽  
C. M. WANG ◽  
H. P. ZHU

Based on an inextensional two-parameter analytical model for cylindrical shells, bi-stable analyses were carried out on laminated functionally graded material (FGM) shells with various layups of fibers. Properties of FGM shells are functionally graded in the thickness direction according to a volume fraction power law distribution. The effects of constituent volume fractions of FGM matrix are examined on the curvature and twist of laminated FGM shells. The results reveal that the optimum combination of constituents of FGM matrix can be obtained for the maximum twist of FGM shells with antisymmetric layups, which helps the design of deployable structures. The effects of Young's modulus of fibers and the symmetry of layups on bi-stable behaviors are also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document