scholarly journals Besov-type spaces for the κ-Hankel wavelet transform on the real line

2021 ◽  
Vol 8 (1) ◽  
pp. 114-124
Author(s):  
Ashish Pathak ◽  
Shrish Pandey

Abstract In this paper, we shall introduce functions spaces as subspaces of Lp κ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lp κ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.








2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Bogdan Bojarski ◽  
Juha Kinnunen ◽  
Thomas Zürcher

This paper gives a characterization of Sobolev functions on the real line by means of pointwise inequalities involving finite differences. This is also shown to apply to more general Orlicz-Sobolev, Lorentz-Sobolev, and Lorentz-Karamata-Sobolev spaces.



2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.



2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  


1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1106
Author(s):  
Jagdish N. Pandey

We define a testing function space DL2(Rn) consisting of a class of C∞ functions defined on Rn, n≥1 whose every derivtive is L2(Rn) integrable and equip it with a topology generated by a separating collection of seminorms {γk}|k|=0∞ on DL2(Rn), where |k|=0,1,2,… and γk(ϕ)=∥ϕ(k)∥2,ϕ∈DL2(Rn). We then extend the continuous wavelet transform to distributions in DL2′(Rn), n≥1 and derive the corresponding wavelet inversion formula interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is defined by an element ψ(x) of DL2(Rn)∩DL1(Rn), n≥1 which, when integrated along each of the real axes X1,X2,…Xn vanishes, but none of its moments ∫Rnxmψ(x)dx is zero; here xm=x1m1x2m2⋯xnmn, dx=dx1dx2⋯dxn and m=(m1,m2,…mn) and each of m1,m2,…mn is ≥1. The set of such wavelets will be denoted by DM(Rn).



2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.



Sign in / Sign up

Export Citation Format

Share Document