Assessment of Proportional Integral Derivative Control Loops for Large Dominant Time Constant Processes

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
K. Ghousiya Begum ◽  
A. Seshagiri Rao ◽  
T. K. Radhakrishnan

Abstract This manuscript deals with the assessment of parallel form of proportional integral derivative (PID) control structure for tracking the reference input designed for large dominant time constant processes whose dynamics are slow (integrating processes). The theoretical bound of integral absolute error (IAE) which is established for unstable first order process is extended to pure integrating process without using any approximations. This relies on direct synthesis tuning (DS) and the theoretical bound is obtained from the transfer function of closed loop system subjected to ramp input changes. An error based performance index is formulated on the basis of this IAE theoretical bound and actual IAE, to measure the behaviour of the controller employed for non self regulating (integrating) processes. This error based index evaluates the performance of closed loop controller and specifies whether the controller requires retuning or not. A sequence of simulated examples is used to illustrate the benefit and effectiveness of this new performance assessment method.

2021 ◽  
Vol 13 (2) ◽  
pp. 81-91
Author(s):  
Asepta Surya Wardhana ◽  
Hana Amelinda Azizah ◽  
Chalidia Nurin Hamdani

Rancang bangun sistem pengendalian temperatur heat exchanger berbasis PID artinya mengendalikan temperatur air dingin keluaran heat exchanger yang telah dirancang agar sesuai dengan nilai set point melalui pengendalian mode controller PID (Proportional Integral Derivative). Pengendalian temperatur dilakukan dengan melibatkan pengendalian laju aliran air panas. Ketika set point temperatur air dingin heat exchanger dinaikkan maka servo valve semakin membuka sehingga laju aliran air panas bertambah. Software Delphi 7 digunakan untuk menampilkan hasil berupa angka dan grafik dari data proses sistem pengendalian temperatur. Nilai parameter mode kontroler PID didapat melalui metode trial and error. Sebagai pembanding, dilakukan perhitungan PID ideal menggunakan metode direct synthesis untuk diterapkan pada kalkulasi pengendalian sistem di dalam mikrokontroler Arduino. Perhitungan PID ideal memerlukan hasil bump test dari masing?masing variabel proses. Hasil analisis data dan grafik interface menunjukkan bahwa kenaikan set point dari 25? menjadi 32? pada temperatur air keluaran heat exchanger mengakibatkan bukaan servo valve mendekati bukaan penuh dan berada pada kondisi hunting system saat temperatur telah mencapai set point. Dari hasil pengujian diperoleh Time Constant 89,744 detik, Settling Time 127,232 detik dan Rise Time 127,8 detik.


Transmisi ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 71
Author(s):  
Bagus Bernadi Saputra ◽  
Wahyudi Wahyudi ◽  
Sudjadi Sudjadi

Base station atau Ground Control Station (GCS) umumnya menggunakan antena directional untuk dapat berkomunikasi dengan objek bergerak seperti roket dan Unmanned Aerial Vehicle (UAV). Antena directional memiliki jarak jangkau yang jauh, namun memiliki sudut pancar yang sempit. Untuk mengatasi kekurangan dari antena directional, diperlukan alat yang dapat menggerakkan antena ke arah objek bergerak secara nyata pada kisaran sudut azimut dan elevasi. Pada penelitian ini, dirancang alat penggerak antena menggunakan metode kontrol Proportional, Integral, dan Derivative (PID) untuk melacak objek bergerak berbasis Global Positioning System (GPS) dan sensor barometer. Dari hasil perancangan dengan menggunakan nilai parameter PID yang digunakan pada sudut elevasi (Kp=0,03, Ti=150, dan Td=0,22) menghasilkan plant yang mampu mencapai setpoint (74o) dalam waktu 2 detik. Parameter PID yang digunakan pada sudut azimut (Kp=3,5, Ti=100, dan Td=0,09) menghasilkan plant yang mampu mencapai setpoint (180o) dalam waktu 1,1 detik. Dari hasil pengujian, diketahui antena dapat mengikuti objek bergerak (drone) dengan waktu terlama 1 detik pada plant azimut dan 1,5 detik pada plant elevasi. Plant elevasi memiliki Mean Absolute Error (MAE) = 6,54o dan plant azimut memiliki MAE = 8,04o.


Author(s):  
Chimpalthradi R Ashokkumar ◽  
George WP York ◽  
Scott F Gruber

In this paper, linear time-invariant square systems are considered. A procedure to design infinitely many proportional–integral–derivative controllers, all of them assigning closed-loop poles (or closed-loop eigenvalues), at desired locations fixed in the open left half plane of the complex plane is presented. The formulation accommodates partial pole placement features. The state-space realization of the linear system incorporated with a proportional–integral–derivative controller boils down to the generalized eigenvalue problem. The generalized eigenvalue-eigenvector constraint is transformed into a system of underdetermined linear homogenous set of equations whose unknowns include proportional–integral–derivative parameters. Hence, the proportional–integral–derivative solution sets are infinitely many for the chosen closed-loop eigenvalues in the eigenvalue-eigenvector constraint. The solution set is also useful to reduce the tracking errors and improve the performance. Three examples are illustrated.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1574-1589
Author(s):  
Mohammad Javad Mahmoodabadi ◽  
Nima Rezaee Babak

Proportional–integral–derivative is one of the most applicable control methods in industry. Although it is simple and effective in most cases, it does not provide robustness against disturbances and may not perform well in cases with uncertainties and nonlinearities. In this study, a fuzzy adaptive robust proportional–integral–derivative controller is used to control a nonlinear 4 degree-of-freedom quadrotor. An adaptation mechanism is submitted to the proportional–integral–derivative controller for updating the proportional, derivative, and integral gains of proportional–integral–derivative control. Furthermore, a sliding surface is generated and submitted to the adaptation mechanism for better regulation of proportional–integral–derivative gains. Afterward, a fuzzy engine is applied to regulate the sliding surface for better performance of the adaptive proportional–integral–derivative when there are disturbance and uncertainties. The multi-objective grasshopper optimization algorithm is implemented on the control system for the regulation of the control system parameters to minimize the error and control effort of the proposed hybrid control system. Finally, the obtained results are presented for a nonlinear 4 degree-of-freedom multi-purpose (for marine, ground, and aerial maneuvers) quadrotor system designed and built in Sirjan University of Technology, Sirjan, Iran, to assure the effectiveness of this technique.


Sign in / Sign up

Export Citation Format

Share Document