ASU Simulation in Separating Air Components by Refrigeration Distillation (Oxygen and Nitrogen) Using ASPEN HYSYS (Case Study: SIAD Company)

2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Afshar Alihosseini

AbstractCurrently, air separation units (ASUs) have become very important in various industries, particularly oil and petrochemical industries which provide feed and utility services (oxygen, nitrogen, etc.). In this study, a new industrial ASU was evaluated by collecting operational and process information needed by the simulator by means of HYSYS software (ASPEN-ONE). The results obtained from this simulator were analyzed by ASU data and its error rate was calculated. In this research, the simulation of ASU performance was done in the presence of an expansion turbine in order to provide pressure inside the air distillation tower. Likewise, the cooling capacity of the cooling compartment and the data were analysed. The results indicated that expansion turbine is costly effective. Notably, it not only reduces the energy needed to compress air and supply power of the equipment, but also provides more cooling power and reduces air temperature. Moreover, turbines also increase the concentration of lighter gas products, namely nitrogen.

1992 ◽  
Vol 25 (3) ◽  
pp. 173-181 ◽  
Author(s):  
F. Fontes Lima ◽  
F. Alves Pereira

Technological developments and their application must follow a course that is parallel with legislation and public concerns about hazardous wastes management. This paper describes and comments the practices that have been conducted at a Brazilian Petrochemical Complex for 10 years.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2703
Author(s):  
Robert Sekret ◽  
Przemysław Starzec

The paper presents the investigation of a prototype cold accumulator using water–ice latent heat for the cold storage process. The concept of the cold accumulator was based on a 200-L-capacity cylindrical storage tank in which spherical capsules filled with water were placed. Beds of polypropylene capsules with diameters of 80 mm, 70 mm, and 60 mm were used in the tests. The cold accumulator operated with a water–air heat pump. Based on the test results, the following parameters were calculated: the cooling capacity, cooling power, energy efficiency of the cold storage, and energy efficiency ratio (EER) of the accumulator. The obtained measurement results were described with mathematical relationships (allowing for measurement error) using criterial numbers and the developed “Research Stand Factor Number” (RSFN) index. It has been found that, for the prototype cold accumulator under investigation, the maximum values of the cooling capacity (17 kWh or 85.3 kWh per cubic meter of the accumulator), energy efficiency (0.99), and EER (4.8) occur for an RSFN of 144·10−4. The optimal conditions for the operation of the prototype cold accumulator were the closest to laboratory tests conducted for a bed with capsules with a diameter of 70 mm and a mass flow of the water–glycol mixture flowing between the accumulator and the heat pump of 0.084 kg/s. During the tests, no significant problems with the operation of the prototype cold accumulator were found.


2021 ◽  
Vol 23 (12) ◽  
pp. 323-338
Author(s):  
Muhammad El-Gharbawy ◽  
◽  
Walaa Shehata ◽  
Fatima Gad ◽  
◽  
...  

In this paper, the simulation and optimization of an industrial ammonia synthesis reactor is illustrated. The converter under study is of a vertical design, equipped with three radial-flow catalyst beds with inter-stage cooling and two quenching points. For building the model, a modified kinetic equation of ammonia synthesis reaction, based on Temkin- Pyzhev equation and an innovative correlation for (KP) prediction, was developed in suitable form for the implementation in Aspen HYSYS plug flow reactor using the spreadsheet embedded in the software with the introduction of some invented simulation techniques. A new parameter, which is a function of (T, P and α), was introduced into the reaction rate equation to account for the variation of KP with pressure. The simulation model is able to describe the converter behavior with acceptable accuracy. A case study was done, using Aspen HYSYS Optimizer, illustrated the optimum reactor temperature profile, after 12 years of operation, to achieve maximum production. The result predicts an increase of 8 tons ammonia per day accompanied with an increase of steam production of 12 tons per day.


2021 ◽  
pp. 0887302X2110530
Author(s):  
Lennart Teunissen ◽  
Emiel Janssen ◽  
Joost Schootstra ◽  
Linda Plaude ◽  
Kaspar Jansen

Eleven phase change materials (PCMs) for cooling humans in heat-stressed conditions were evaluated for their cooling characteristics. Effects of packaging material and segmentation were also investigated. Sample packs with a different type PCM (water- and oil-based PCMs, cooling gels, inorganic salts) or different packaging (aluminum, TPU, TPU + neoprene) were investigated on a hotplate. Cooling capacity, duration, and power were determined. Secondly, a PCM pack with hexagon compartments was compared to an unsegmented version with similar content. Cooling power decreased whereas cooling duration increased with increasing melting temperature. The water-based PCMs showed a >2x higher cooling power than other PCMs, but were relatively short-lived. The flexible gels and salts did not demonstrate a phase change plateau in cooling power, compromising their cooling potential. Using a TPU or aluminum packaging was indifferent. Adding neoprene considerably extended cooling duration, while decreasing power. Segmentation has practical benefits, but substantially lowered contact area and therefore cooling power.


2018 ◽  
Vol 26 (03) ◽  
pp. 1850025
Author(s):  
Hicham Boushaba ◽  
Abdelaziz Mimet

The aim of this paper is to provide a global study of an adsorption refrigeration machine driven by solar heat storage and collected by parabolic trough collector. The system operates with ammonia (as refrigerant) and activated carbon (as adsorbent). A mathematical model interpreting the progression of the heat and the mass transfer at each element of the prototype has been developed. The solar irradiation and the real ambient temperature variations corresponding to a usual summer day in Tetouan (Morocco) are considered. The system performance is evaluated trough specific cooling power (SCP) as well as solar coefficient of performance (SCOP), which was estimated by a dynamic simulation cycle. The pressure, temperature and adsorbed mass profiles in the Adsorber have been calculated. The effects of significant design and operating parameters on the system performance have been investigated. The results show the capability of our system to realize an encouraging performance and to overcome the intermittence of the adsorption refrigeration machines. For a daily solar irradiation of 18[Formula: see text]MJ[Formula: see text]m[Formula: see text] and operating conditions of evaporation temperature [Formula: see text]C, condensation temperature [Formula: see text]C and generation temperature [Formula: see text]C, the results show that the process could achieve an SCP of 115[Formula: see text]W[Formula: see text]kg[Formula: see text] and it could produce a daily specific cooling capacity of 3310[Formula: see text]kJ[Formula: see text]kg[Formula: see text], whereas its SCOP could attain 0.141.


Author(s):  
B. Arellano ◽  
J. Roca

Abstract. The urban climate literature has highlighted the remarkable prominence of nighttime UHI phenomenon. During nighttime the UHI effects become more evident due to the greater thermal inertia of the materials used in urban fabric. It is during the night when the heat accumulated in urban materials, especially in contexts of heat waves, can generate significant health risks. The low cooling capacity of urban construction materials negatively affects the comfort and the health of urban dwellers. However, and despite the great importance of night stress due to heat, the study of night UHIs is still underdeveloped. In this context, this paper aims to determine nighttime LST contrasting Landsat's very limited nighttime images with daytime ones. The example developed refers to heat wave situations during the summer 2015. The case study is the Metropolitan Area of Barcelona (35 municipalities, 636 km2, 3.3 million inhabitants).


2021 ◽  
Author(s):  
Arletis Cruz Llerena ◽  
Osney Perez Ones ◽  
Lourdes Zumalacárregui de Cárdenas ◽  
José Luis Pérez de los Ríos

Abstract Purpose Vinasse is one of the organic industrial effluents with major polluting effect. The objective of this work was to perform a techno-economic assessment of vinasses treatment alternatives for valorization of this waste through process simulation with Aspen Hysys v10.0. Methods Four alternatives were studied: (A_1) incineration and electricity generation, (A_2) desalinization, (A_3) anaerobic digestion and electricity generation and (A_4) drying. The selected packages for the evaluation and prediction of properties were: Lee-Kesler-Plöcker and NBS Steam, NRTL-Ideal, Peng-Robinson-Stryjer-Vera and NBS Steam and NRTL-Ideal respectively; the validation in these cases was carried out with data reported in the literature. The economic evaluation was carried according to the changes that each alternative determines in each one of the elements of effective cash flow comparing with the actual condition. Results With the alternative A_1, fertilizers ashes are obtained removing all the residual and the energy generation. By the alternative A_2, fertilizers salts and desalinate vinasses (for animal food) were obtained. By the alternative A_3, energy is generated from biogas. By the alternative A_4, dry vinasse is obtained which is used as fertilizer and animal food. Conclusion The polluting effect of the vinasse can be reduced with the proposed treatment alternatives. It was showed that the alternatives are feasible, being the alternative A_1 the best, with a NPV of $ 1.29 MMUSD, IRR 25.5% and DPBP 2.7 years. Process simulation are a valuable supporting tool when making decisions in investment projects for valorization of vinasse from the ethanol industry.


Sign in / Sign up

Export Citation Format

Share Document