A PROBLEM FOR THE HYPERBOLIC SYSTEM OF DIFFERENTIAL EQUATIONS WITHOUT INITIAL CONDITIONS

2005 ◽  
Vol 38 (2) ◽  
Author(s):  
Zaręba Lech
2020 ◽  
Vol 5 ◽  
pp. 51-59
Author(s):  
Yuriy Abramov ◽  
Oleksii Basmanov ◽  
Valentina Krivtsova ◽  
Andrii Khyzhnyak

One of the tasks to be solved when deploying fire extinguishing systems is to determine the range of the fire extinguishing agent supply to the combustion center. This problem is solved using data on the trajectory of the fire-extinguishing agent in the combustion center. The presence of wind impact on the process of supplying a fire extinguishing agent will lead to a change in its trajectory. To take into account wind impact, it becomes necessary to assess the result of such impact. Using the basic equation of dynamics for specific forces, a system of differential equations is obtained that describes the delivery of a fire extinguishing agent to the combustion center. The system of differential equations takes into account the presence of wind impact on the movement of the extinguishing agent. The presence of wind action is taken into account by the initial conditions. To solve such a system, the integral Laplace transform was used in combination with the method of undefined coefficients. The solution is presented in parametric form, the parameter of which is time. For a particular case, an expression is obtained that describes the trajectory of the supply of the extinguishing agent into the combustion center. Nomograms are constructed, with the help of which the operative determination of the estimate of the maximum range of the fire-extinguishing agent supply is provided. Estimates are obtained for the time of delivery of a fire-extinguishing agent to the combustion center, and it is shown that for the characteristic parameters of its delivery, this value does not exceed 0.5 s. The influence of wind action on the range of supply of a fire extinguishing agent is presented in the form of an additive component, which includes the value of the wind speed and the square of the time of its delivery. To assess the effect of wind impact on the movement of the fire extinguishing agent, an analytical expression for the relative error was obtained and it was shown that the most severe conditions for supplying the fire extinguishing agent to the combustion center, the value of this error does not exceed 5.5%. Taking into account the wind effect when assessing the range of supply of a fire-extinguishing agent makes it possible to increase the efficiency of fire-extinguishing systems due to its more accurate delivery to the combustion center


Author(s):  
В.А. Коршунов ◽  
Р.С. Мудрик ◽  
Д.А. Пономарев ◽  
А.А. Родионов

В работе рассмотрена проблема управления ледовой обстановкой при освоении участков на морской шельфе. Отмечено, что наиболее эффективным способом управления движения айсбергов и их осколков является использование буксировочных систем. В зависимости от размера айсберга в качестве буксировочной системы может использоваться либо одиночный канат, либо ледовая сетка. Описана технология осуществления буксировки. Рассмотрено два варианта математической формулировки задачи буксировки. Инженерный подход основан на решении системы нелинейных дифференциальных уравнений динамики с известными начальными условиями. Наиболее точным является аппарат механики сплошных сред, который опирается на фундаментальные законы сохранения. Он позволяет построить связанную нелинейную систему дифференциальных уравнений с минимальным количеством допущений. Использование данного подхода возможно при численном моделировании процесса буксировки. В работе создана конечно-элементная модель взаимодействия айсберга с буксировочной системой. Разработан упрощенный алгоритм учета жидкости. Получены кинематические и динамические характеристики процесса буксировки. Определен коэффициент динамичности усилий. The paper deals with the problem of ice management during the development of the sea shelf. It is noted that the most effective way to control the movement of icebergs and their fragments is to use towing systems. Depending on the size of the iceberg, either a single rope or an ice net can be used as a towing system. The technology of towing is described. Various of the mathematical formulation of the towing problem are considered. The engineering approach is based on solving a system of nonlinear differential equations of dynamics with initial conditions. More accurate approach is the computational continuum mechanics, which is based on fundamental conservation laws. It allows to build a nonlinear system of differential equations with a minimum of assumptions. This approach can be used for numerical modeling of the towing process. In the paper, a finite element model of the interaction of an iceberg with a towing system is created. To account liquid the simplified algorithm is prescribed. The kinematic and dynamic characteristics of the towing process are obtained. The dynamic factor of axial force is determined.


2020 ◽  
Author(s):  
Miles Roberts ◽  
Helena Duplechin Seymour ◽  
Alexander Dimitrov ◽  

1AbstractSARS-CoV-2, the virus responsible for COVID-19, has killed hundreds of thousands of Americans. Although physical distancing measures played a key role in slowing COVID-19 spread in early 2020, infection rates are now peaking at record levels across the country. Hospitals in several states are threatened with overwhelming numbers of patients, compounding the death toll of COVID-19. Implementing strategies to minimize COVID-19 hospitalizations will be key to controlling the toll of the disease, but non-physical distancing strategies receive relatively little attention. We present a novel system of differential equations designed to predict the relative effects of hospitalizing fewer COVID-19 patients vs increasing ICU bed availability on delaying ICU bed shortages. This model, which we call SEAHIRD, was calibrated to mortality data on two US states with different peak infection times from mid-March – mid-May 2020. It found that hospitalizing fewer COVID-19 patients generally delays ICU bed shortage more than a comparable increase in ICU bed availability. This trend was consistent across both states and across wide ranges of initial conditions and parameter values. We argue that being able to predict which patients will develop severe COVID-19 symptoms, and thus require hospitalization, should be a key objective of future COVID-19 research, as it will allow limited hospital resources to be allocated to individuals that need them most and prevent hospitals from being overwhelmed by COVID-19 cases.


Author(s):  
Lev Velychko ◽  
Oksana Petruchenko ◽  
Oksana Tereshchuk ◽  
Roman Nanivskyi

In this scientific work, the team of authors presents a mathematical model for studying the dynamics of the motion of a projectile in the air, fired from cannon. One of the main problems of external ballistics is to determine the magnitude of the force of the air resistance to the movement of the projectile. Usually in studies, a discrete relationship between the magnitude of the force of resistance and projectile velocity has been established. However, to improve the accuracy of firing, it is necessary to determine the functional dependence of air resistance on projectile velocity, deterministic and non-deterministic factors. The authors, when processing the results of landfill studies, which are presented in the tables of firing, found that the magnitude of the force of air resistance to the movement of the projectile depends not only on its speed but also on acceleration Based on this, the functional dependence of the force of air resistance is described separately during the movement of the projectile with the following velocities: supersonic (stage I); subsonic - with negative acceleration (stage II); subsonic with positive acceleration (stage III). To determine the coefficients of functional dependences, it is proposed to use inverse dynamics problems. Boundary conditions were considered - the full horizontal range of the projectile, depending on the specific angle of impact, obtained from the results of landfill research and given in the firing tables. Under the condition of a certain functional dependence of the force of counter-air resistance, taking into account the weight of the projectile and the Carioles’ force, as a result of this work is obtained the system of differential equations, which describes the motion of the projectile in air. The initial conditions for the first stage were taken the initial velocity of the projectile and zero (original) coordinates; for the second stage - the value of the kinematic parameters of the projectile at a time when its speed became equal to the speed of sound in the air; for the third stage - the value of the kinematic parameters of the projectile at the time when its velocity began to increase. By solving the system of differential equations, using the appropriate software, can be determined the impact of projectile charge and air temperatures, atmospheric pressure, changes in projectile mass and its initial velocity on the kinematic parameters of projectile motion. In addition, it allows you to automate the process of determining the aiming angle (it is better to ask the gunners the correctness of this concept) depending on the firing range, taking into account the above factors. Also, in the work on the basis of the method proposed by the authors, the is carried out comparison of the kinematic parameters of the projectile with the results given in the firing tables. They indicate minor differences when shooting at short distances, but when shooting at long distances - these differences increase, as the results in the tables of shootings are quite approximate.


2020 ◽  
Vol 25 (4) ◽  
pp. 116-129
Author(s):  
O.S. Lanets ◽  
V.T. Dmytriv ◽  
V.M. Borovets ◽  
I.A. Derevenko ◽  
I.M. Horodetskyy

AbstractThe article deals with atwo-mass above resonant oscillatory system of an eccentric-pendulum type vibrating table. Based on the model of a vibrating oscillatory system with three masses, the system of differential equations of motion of oscillating masses with five degrees of freedom is compiled using generalized Lagrange equations of the second kind. For given values of mechanical parameters of the oscillatory system and initial conditions, the autonomous system of differential equations of motion of oscillating masses is solved by the numerical Rosenbrock method. The results of analytical modelling are verified by experimental studies. The two-mass vibration system with eccentric-pendulum drive in resonant oscillation mode is characterized by an instantaneous start and stop of the drive without prolonged transient modes. Parasitic oscillations of the working body, as a body with distributed mass, are minimal at the frequency of forced oscillations.


Author(s):  
Farrukh Nuriddin ugli Dekhkonov

In this paper, we consider with a class of system of differential equations whose argument transforms are involution. In this an initial value problem for a differential equation with involution is reduced to an initial value problem for a higher order ordinary differential equation. Than either two initial conditions are necessary for a solution, the equation is then reduced to a boundary value problem for a higher order ODE.


2013 ◽  
Vol 54 ◽  
Author(s):  
Aleksandras Krylovas ◽  
Rima Kriauzienė

In this paper hyperbolic system of the first order gas dynamics PDE with initial and boundary conditions is studied. The aim of the paper is to construct the averaged system of differential equations in order to find the uniformly valid in a large domain asymptotical solution. The averaged system is a new object of asymptotical analysis.


Sign in / Sign up

Export Citation Format

Share Document