scholarly journals Is the Polish Smog a New Type of Smog?

2019 ◽  
Vol 26 (3) ◽  
pp. 465-474 ◽  
Author(s):  
Justyna Czerwińska ◽  
Grzegorz Wielgosiński ◽  
Olga Szymańska

Abstract In recent years, every winter we face the problem of excessive air pollution in the cities in Poland. This phenomenon is usually called smog and is associated with the concept of acidic smog of London type. However, there is a fundamental difference between the Great Smog of London known from the literature and winter smog episodes in Poland. While in 1952 in London the smog occurred at low atmospheric pressure, in foggy and windless weather conditions, in Poland smog episodes occur most often at the influx of cold, high-pressure air masses from the east in sunny weather. There are also various harmful components of smog - in London it was dust (suspended particulate matter), sulfur dioxide and carbon monoxide, while in Poland it is suspended particulate matter and polyaromatic hydrocarbons, especially benzo(a)pyrene. A common factor is the inversion of temperature in the ground level of the atmosphere. The chemical composition of the “Polish smog” is analyzed in the study justifying the need to distinguish the two types of smog described.

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 928
Author(s):  
Inna A. Nemirovskaya ◽  
Vladimir P. Shevchenko

Long-term studies of suspended particulate matter (SPM) and organic compounds (OCs)—Corg, lipids, hydrocarbons (aliphatic—AHCs and polycyclic aromatic—PAHs), and chlorophyll a in the snow cover of the Arctic (Franz Victoria Trough, Mendeleev Rise, White Sea) and Antarctica (in the coastal waters on fast ice and on the mainland near Russian stations) were generalized. It was shown that in the Arctic, the influence of continental air masses leads to an increase in OCs in snow. Therefore, despite the fact that the Franz Victoria Trough and the Mendeleev Rise are at the same latitude (82° N), the OCs content in the snow in the region of the Mendeleev Rise was lower for aliphatic hydrocarbons 5 and 14–18 μg/L. In the White Sea, the AHC content in the snow and the upper layers of the ice in the mouth of the Severnaya Dvina River and in the Kandalaksha Bay was higher than that in the lower layers of the ice and sharply decreased with distance from the emission sources. As a result, the snow was supplied mainly by pyrogenic PAHs. In the Antarctica, the lowest OCs levels in atmosphere were found in areas where coastal hills are covered with snow. The maximum SPM and AHCs concentration was found in the sludge (SPM—to 4.37 mg/L, AHC—to 33 μg/L). An increase in the concentration of OCs and SPM in snow sampled on the continent took place in the areas of stations and oases (St. Novolazarevskaya) where the predominance of mineral particles in the SPM was registered. In the area of the operating stations, mainly low molecular weight PAHs with the dominance of petroleum PAHs were found in the SPM of snow and in mosses.


1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


Sign in / Sign up

Export Citation Format

Share Document