SnO2/PANI nanocomposite electrodes for supercapacitors and lithium ion batteries
Abstract Tin oxide (SnO2) nanostructures and SnO2/Polyaniline (PANI) nanocomposites to be used as electrode materials for a lithium ion battery were synthesized using a solution-route technique with chelating agents followed by calcination at 300∘C for 4 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 25-10 nm size are observed in the microscope images. TGA results showed that the PANI-modified SnO2 nanoparticles exhibit higher thermal stability than the SnO2 nanoparticles. Electrochemical properties of SnO2 and SnO2/PANI electrodes were examined in a lithium ion battery and a supercapacitor. The electrode of SnO2/PANI shows higher specific capacity. The cell with SnO2/PANI exhibits a specific capacity of 1450 mAh/g at C/10. Supercapacitor results indicate that the PANI-modified SnO2 composite had a higher current with apparent cathodic and anodic peaks.