scholarly journals Making and Characterization of Limnpo4 Using Solid State Reaction Method for Lithium Ion Battery Cathodes

Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.

2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


2020 ◽  
Vol 860 ◽  
pp. 75-80
Author(s):  
Mochamad Zainuri ◽  
Triwikantoro ◽  
Pelangi Az Zahra

A cathode Lithium Ferro Phospate (LFP) composite material with variation doping ion Silicon (Si) with x = 0; 0,01; 0,03; 0.06 and carbon coating (LiFeSixP1-xO4/C) as lithium ion battery cathode were synthesized by a solid state reaction and wet milling methods. X-Ray Diffraction (XRD) pattern showed that the of olivine phase formed, and analysis characterization of Scanning Electron Microscopy (SEM) have shown average dimension particle of cathode in orde 1 micron. Analysis by Cyclic Voltammetry (CV) doping ion Si x = 0,03 have the best reversible electrochemical process than the other concentration, and have the highest charge and discharge capacity (78,745 mAh/g).


2012 ◽  
Vol 554-556 ◽  
pp. 436-439 ◽  
Author(s):  
An Ping Tang ◽  
Ze Qiang He ◽  
Jie Shen ◽  
Guo Rong Xu

Lithium vanadyl phosphate (β-LiVOPO4) cathode material for lithium ion batteries was prepared via a novel solid state method. The microstructure and electrochemical properties of the sample were characterized by X-ray diffraction, scanning electron microscopy, galvanostatically discharge/discharge and cyclic voltammetry techniques, respectively. X-ray diffraction patterns showed that β-LiVOPO4 has an orthorhombic structure with space group of Pnma. The discharge capacity of LiVOPO4 sample is 89.9 mAh•g-1 in the first cycle, and in the 50th cycle it is 76.2 mAh•g-1 at the current density of 10 mA•g-1 between 3.0-4.5 V. The chemical diffusion coefficient ( ) value determined from CV is about 10-11 cm2 s-1. Experimental results indicate that further efforts are needed to improve electrochemical performances of LiVOPO4 material synthesized by solid state method; however, it has a higher discharge plateau around 3.9 V.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3502
Author(s):  
Fangzhou Song ◽  
Masayoshi Uematsu ◽  
Takeshi Yabutsuka ◽  
Takeshi Yao ◽  
Shigeomi Takai

LATP-based composite electrolytes were prepared by sintering the mixtures of LATP precursor and La2O3 nano-powder. Powder X-ray diffraction and scanning electron microscopy suggest that La2O3 can react with LATP during sintering to form fine LaPO4 particles that are dispersed in the LATP matrix. The room temperature conductivity initially increases with La2O3 nano-powder addition showing the maximum of 0.69 mS∙cm−1 at 6 wt.%, above which, conductivity decreases with the introduction of La2O3. The activation energy of conductivity is not largely varied with the La2O3 content, suggesting that the conduction mechanism is essentially preserved despite LaPO4 dispersion. In comparison with the previously reported LATP-LLTO system, although some unidentified impurity slightly reduces the conductivity maximum, the fine dispersion of LaPO4 particles can be achieved in the LATP–La2O3 system.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2002 ◽  
Vol 80 (8) ◽  
pp. 1162-1165 ◽  
Author(s):  
B Henrissat ◽  
G K Hamer ◽  
M G Taylor ◽  
R H Marchessault

A series of dodecyl 1-thio-β-D-glycosides has been synthesized and characterized (DSC, NMR, CP MAS, X-ray diffraction) as possible new marking materials with liquid-crystalline properties. These compounds undergo solid to liquid crystal phase transitions at various temperatures, which depend on the nature of the carbohydrate part of the structure. Their liquid-crystalline phases show extreme shear thinning behaviour.Key words: liquid crystal, powder X-ray diffraction, phase transition, thioglycoside, solid-state NMR, marking material


2012 ◽  
Vol 736 ◽  
pp. 127-132
Author(s):  
Kuldeep Rana ◽  
Anjan Sil ◽  
Subrata Ray

Lithium alloying compounds as an anode materials have been a focused for high capacity lithium ion battery due to their highenergy capacity and safety characteristics. Here we report on the preparation of graphite-tin composite by using ball-milling in liquid media. The composite material has been characterized by scanning electron microscope, energy depressive X-ray spectroscopy, X-ray diffraction and Raman spectra. The lithium-ion cell made from graphite-tin composite presented initial discharge capacity of 1065 mAh/g and charge capacity 538 mAh/g, which becomes 528 mAh/g in the second cycle. The composite of graphite-tin with higher capacity compared to pristine graphite is a promising alternative anode material for lithium-ion battery.


Sign in / Sign up

Export Citation Format

Share Document